微流控芯片上的器官(僅芯片)-魯爾
- 公司名稱 世聯(lián)博研(北京)科技有限公司
- 品牌
- 型號
- 產地
- 廠商性質 代理商
- 更新時間 2019/11/5 14:18:13
- 訪問次數(shù) 413
聯(lián)系方式:李勝亮13261877206 查看聯(lián)系方式
聯(lián)系我們時請說明是化工儀器網(wǎng)上看到的信息,謝謝!
細胞應力加載儀,3細胞打印機,NanoTweezer新型激光光鑷系統(tǒng),PicoTwist磁鑷,美國NeuroIndx品牌Kuiqpick單細胞捕獲切割系統(tǒng)
價格區(qū)間 | 面議 | 儀器種類 | 微流控芯片系統(tǒng) |
---|---|---|---|
應用領域 | 生物產業(yè) |
微流控芯片上的器官(僅芯片)-魯爾
描述
一個理想的芯片上的器官應該易于使用,并且可以可逆地進入芯片中的細胞進行下游分析。因此,我們的芯片器官滿足所有這些要求模塊化微流控芯片由兩塊PC(聚碳酸酯)塑料板組成,每個板上有四塊可逆組裝用集成磁鐵和一個彈性PDMS薄膜,以確保良好的密封性。芯片上部的luer連接器允許藥物篩選和/或細胞分化實驗期間的介質灌注和動態(tài)流動條件。
不同的貼片可用于培養(yǎng)細胞或在培養(yǎng)皿或微孔板中分化人誘導多能干細胞(hiPSC),以創(chuàng)建組織貼片(如心臟、神經(jīng)元等)然后,獲得的組織貼片(或其他組織培養(yǎng)插入物)可以集成到芯片上組裝的器官中。文化修補程序在這里可用!
微腔和微通道在芯片的兩個塑料板上形成圖案,形成兩個獨立的微流控系統(tǒng):由組織貼片分離的上腔和下腔。這兩個微流控室可以用不同的培養(yǎng)基進行灌注。從而形成組織界面,模擬肺泡、胃、腸、腎、肝、腦血、皮膚功能等。
芯片內的組織可以通過顯微鏡觀察或采集用于下游分析。
微流控芯片
該芯片設計用于各種類型貼片的可逆集成。它由兩塊塑料板組成,每一塊都有一個彈性薄膜、四個嵌入磁鐵、預圖案化的腔室和微通道當貼片放置在兩塊板之間時,四對磁鐵之間的力確保在高達8千帕的壓力下自動裝配后,標準的luer連接板上允許一個簡單的介質和藥物灌注。
為確保高流量壓力(高達100千帕)下的良好密封性,芯片可放置在手動螺紋夾具中進行組裝和快速操作(不包括夾具,可單獨訂購;單擊此處了解更多信息)。在動態(tài)流動條件下的實驗結束時,通過拆開夾子和微流控芯片,可以很容易地取出組織補片。
更普遍地說,將4個微流控芯片與不同的組織貼片集成,可以創(chuàng)建一個類似于身體的循環(huán)或微生理系統(tǒng),以研究不同組織(芯片上的身體)的相互影響。例如,可以將人的腸、肝、皮膚和腎細胞與一個中等循環(huán)回路聯(lián)合培養(yǎng),這將為藥物篩選提供一個可靠的平臺。
微流控芯片上的器官(僅芯片)-魯爾
Description
An ideal Organ-on-Chip should be easy to use and with a reversible access to cells in chip for downstream analysis. Hence our Organ-on-Chip meets all these demands. The modular microfluidic chip consists in two plastic plates in PC (Polycarbonate), each having four integrated magnets for reversible assembly and an elastomeric PDMS thin film to ensure good sealing. The Luer Connectors in the upper part of the chip allow medium perfusion and dynamic flow conditions during your experiments of drug screening and/or cell differentiation.
Different patches can be used to culture cells or to differentiate Human Induced Pluripotent Stem Cells (hiPSC) in dish or microplates in order to create your tissue patch (e.g. cardiac, neuron, etc). Then, the obtained tissue patch (or other tissue culture inserts) can be integrated in the assembled Organ-on-Chip. Culture patches are available here!
Micro-chambers and micro-channels are patterned in both plastic plates of the chip to create two independent microfluidic systems: the upper and the lower chambers separated by the tissue patch. These two microfluidic chambers can be perfused with different culture media. Thus a tissue interface can be formed to simulate alveolar, stomach, intestine, kidney, liver, brain-blood, skin functions, etc.
Tissues inside the chip can be observed by microscopy or harvested for downstream analysis.
Microfluidic chip
This chip was designed for reversible integration of various types of patches. It consists in two plastic plates, each having an elastomeric thin film, four embedded magnets, and pre-patterned chambers and micro-channels. When a patch is placed between the two plates, the force between the four pairs of magnets ensures auto-assembling at pressures up to 8 kPa. Finally, the standard Luer Connectors of the upper plate allow an easy medium and drug perfusion.
To ensure good sealing with high flow pressures (up to 100 kPa), the chip can be placed in a hand screwed clamp for assembling and fast operation (the clamp is not included and can be ordered separately; click here for additional information). At the end of your experiment in dynamic flow conditions, the tissue patch can be easily removed by dissembling the clamps and the microfluidic chip.
More generally, integration of 4 microfluidic chips with different tissue patches will allow creating a body-like circulatory or micro-physiological system to investigate the mutual influences of different tissues (a Body-on-Chip). For example, a co-culture of human intestine, liver, skin and kidney cells with a medium circulation loop could be assembled and it will represent a reliable platform for drug screening.