官方微信|手機版

產(chǎn)品展廳

產(chǎn)品求購企業(yè)資訊會展

發(fā)布詢價單

化工儀器網(wǎng)>產(chǎn)品展廳>生命科學(xué)儀器>植物生理生態(tài)儀器>葉綠素儀/葉綠素測定儀> 手持式葉綠素熒光儀---FluorPen FP110

分享
舉報 評價

手持式葉綠素熒光儀---FluorPen FP110

具體成交價以合同協(xié)議為準

聯(lián)系我們時請說明是化工儀器網(wǎng)上看到的信息,謝謝!


葉綠素熒光成像儀,高光譜成像儀,顯微鏡

產(chǎn)地類別 國產(chǎn) 價格區(qū)間 面議
應(yīng)用領(lǐng)域 醫(yī)療衛(wèi)生,生物產(chǎn)業(yè)

       手持式葉綠素熒光儀---FluorPen FP110用于實驗室、溫室和野外快速測量植物葉綠素熒光參數(shù),具有便攜性強、精度高、性價比高等特點;雙鍵操作,具圖形顯示屏,內(nèi)置鋰電和數(shù)據(jù)存儲,廣泛應(yīng)用于研究植物的光合作用、脅迫監(jiān)測、除草劑檢測或突變體篩選,還可用于生物毒理的生物檢測,如通過不同植物對土壤或水質(zhì)污染的葉綠素熒光響應(yīng),找出敏感植物作為生物傳感器用于生物檢測。FP110配備多種葉夾型號,用于不同的樣品與研究。

 

應(yīng)用領(lǐng)域

       手持式葉綠素熒光儀---FluorPen FP110適用于光合作用研究和教學(xué),植物及分子生物學(xué)研究,農(nóng)業(yè)、林業(yè),生物技術(shù)領(lǐng)域等。研究內(nèi)容涉及光合活性、脅迫響應(yīng)、農(nóng)藥藥效測試、突變篩選等。

  • 植物光合特性研究
  • 光合突變體篩選與表型研究
  • 生物和非生物脅迫的檢測
  • 植物抗脅迫能力或者易感性研究
  • 農(nóng)業(yè)和林業(yè)育種、病害檢測、長勢與產(chǎn)量評估
  • 除草劑檢測
  • 教學(xué)

 

功能特點

  • 結(jié)構(gòu)緊湊、便攜性強,LED光源、檢測器、控制單元集成于僅手機大小的儀器內(nèi),重量僅188g
  • 功能強大,是葉綠素熒光技術(shù)的高新結(jié)晶產(chǎn)品,具備了大型熒光儀的所有功能,可以測量所有葉綠素熒光參數(shù)
  • 內(nèi)置了所有通用葉綠素熒光分析實驗程序,包括3套熒光淬滅分析程序、3套光響應(yīng)曲線程序、OJIP快速熒光動力學(xué)曲線等
  • 高時間分辨率,可達10萬次每秒,自動繪出OJIP曲線并給出26個OJIP–test參數(shù)
  • FluorPen專業(yè)軟件功能強大,可下載、展示葉綠素熒光參數(shù)圖表,也可以通過軟件直接控制儀器進行測量
  • 具備無人值守自動監(jiān)測功能
  • 內(nèi)置藍牙與USB雙通訊模塊,GPS模塊,輸出帶時間戳和地理位置的葉綠素熒光參數(shù)圖表
  • 配備多種葉夾型號:固定葉夾式(適于實驗室內(nèi)暗適應(yīng)或夜間快速測量)、分離葉夾式(適用于野外暗適應(yīng)測量)、探頭式(透明光纖探頭,具備葉片固定裝置,用于非接觸性測量監(jiān)測或光適應(yīng)條件下的葉綠素熒光監(jiān)測)、用戶定制式等
  • 可選配野外自動監(jiān)測式熒光儀,防水防塵設(shè)計

 

測量程序與功能

  • Ft:瞬時葉綠素熒光,暗適應(yīng)完成后Ft=F0
  • QY:量子產(chǎn)額,表示光系統(tǒng)II 的效率,等于Fv/Fm(暗適應(yīng)狀態(tài))或ΦPSII (光適應(yīng)狀態(tài))。
  • OJIP:快速熒光動力學(xué)曲線,用于研究植物暗適應(yīng)后的快速熒光動態(tài)變化
  • NPQ:熒光淬滅動力學(xué)曲線,用于研究植物從暗適應(yīng)到光適應(yīng)狀態(tài)的熒光淬滅變化過程。
  • LC:光響應(yīng)曲線,用于研究植物對不同光強的熒光淬滅反應(yīng)。
  • PAR:光合有效輻射,測量環(huán)境中植物生長可以利用的400-700nm實際光強(限PAR型號)。

 

應(yīng)用案例

 

2017年4月,美國國家航空*(NASA)新一代*植物培養(yǎng)器(Advanced Plant Habitat,APH)搭載聯(lián)盟號MS-04貨運飛船抵達空間站。宇航員使用FluorPen手持儀葉綠素熒光儀在其中開展植物生理學(xué)及太空食物種植(growth of fresh food in space)的研究。

 

參考文獻

  • F Danget al. 2019. Discerning the Sources of Silver Nanoparticle in a Terrestrial Food Chain by Stable Isotope Tracer Technique. Environmental Science & Technology 53(7): 3802-3810
  • N Moghimiet al. 2019. New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum. Journal of Experimental Botany 70(12): 3357–3371
  • M Rafiqueet al. 2019. Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils. Journal of Environmental Management 247: 672-680
  • P Soudeket al. 2019. Thorium as an environment stressor for growth of Nicotiana glutinosa plants. Environmental and Experimental Botany 164: 84-100
  • JA Pérez-Romeroet al. 2019. Investigating the physiological mechanisms underlying Salicornia ramosissima response to atmospheric CO2 enrichment under coexistence of prolonged soil flooding and saline excess. Plant Physiology and Biochemistry 135: 149-159
  • D Shaoet al. 2019. Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure. Annals of Botany, DOI: 10.1093/aob/mcz067
  • C Cirilloet al. 2019. Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus andViburnum lucidum to NaCl and CaCl2 Salinization. Front. Plant Sci. 10:742
  • T Savchenkoet al. 2019. Waterlogging tolerance rendered by oxylipin-mediated metabolic reprogramming in Arabidopsis. Journal of Experimental Botany 70(10): 2919–2932
  • M Liuet al. 2019. Strong turbulence benefits toxic and colonial cyanobacteria in water: A potential way of climate change impact on the expansion of Harmful Algal Blooms. Science of The Total Environment 670: 613-622
  • PK Tiwariet al. 2019. Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicology and Environmental Safety 176: 321-329
  • JA Pérez-Romeroet al. 2018. Atmospheric CO2 enrichment effect on the Cu-tolerance of the C4 cordgrass Spartina densiflora. Journal of Plant Physiology 220: 155-166
  • SK Yadavet al. 2018. Physiological and Biochemical Basis of Extended and Sudden Heat Stress Tolerance in Maize. Proceedings of the National Academy of Sciences 88(1): 249-263
  • D Balfagónet al. 2018. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Plant Physiology and Biochemistry 127: 194-199
  • JI Vílchezet al. 2018. Protection of Pepper Plants from Drought by Microbacterium sp. 3J1 by Modulation of the Plant's Glutamine and α-ketoglutarate Content: A Comparative Metabolomics Approach. Front. Microbiol. 9: 284
  • MC Sorrentino, et al. 2018. Performance of three cardoon c*rs in an industrial heavy metal-contaminated soil: Effects on morphology, cytology and photosynthesis. Journal of Hazardous Materials 351: 131-137
  • E Niewiadomska, et al. 2018. Lack of tocopherols influences the PSII antenna and the functioning of photosystems under low light. Journal of Plant Physiology 223: 57-64
  • S Singh, et al. 2018. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. Journal of Photochemistry and Photobiology B: Biology 178: 76-84
  • EL Fry, et al. 2018. Drought neutralises plant–soil feedback of two mesic grassland forbs. Oecologia 186(4): 1113–-125

 

附:OJIP參數(shù)及計算公式

Bckg = background

Fo: = F50µs; fluorescence intensity at 50 µs

Fj: = fluorescence intensity at j-step (at 2 ms)

Fi: = fluorescence intensity at i-step (at 60 ms)

Fm: = maximal fluorescence intensity

Fv: = Fm - Fo (maximal variable fluorescence)

Vj = (Fj - Fo) / (Fm - Fo)

Fm / Fo = Fm / Fo

Fv / Fo = Fv / Fo

Fv / Fm = Fv / Fm

Mo = TRo / RC - ETo / RC

Area = area between fluorescence curve and Fm

Sm = area / Fm - Fo (multiple turn-over)

Ss = the smallest Sm turn-over (single turn-over)

N = Sm . Mo . (I / Vj) turn-over number QA

Phi_Po = (I - Fo) / Fm (or Fv / Fm)

Phi_o = I - Vj

Phi_Eo = (I - Fo / Fm) . Phi_o

Phi_Do = 1 - Phi_Po - (Fo / Fm)

Phi_Pav = Phi_Po - (Sm / tFM); tFM = time to reach Fm (in ms)

ABS / RC = Mo . (I / Vj) . (I / Phi_Po)

TRo / RC = Mo . (I / Vj)

ETo / RC = Mo . (I / Vj) . Phi_o)

DIo / RC = (ABS / RC) - (TRo / RC)



化工儀器網(wǎng)

采購商登錄
記住賬號    找回密碼
沒有賬號?免費注冊

提示

×

*您想獲取產(chǎn)品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

溫馨提示

該企業(yè)已關(guān)閉在線交流功能