QUANTUM量子科學(xué)儀器貿(mào)易(北京)有限公司

成果速遞|小型無(wú)掩膜光刻直寫(xiě)系統(tǒng)的新研究應(yīng)用

時(shí)間:2019-10-16閱讀:1743

    隨著電子信息產(chǎn)業(yè)的高速發(fā)展,集成電路的需求出現(xiàn)了井噴式的增長(zhǎng)。使得掩膜的需求急劇增加,目前制作掩膜的主要技術(shù)是電子束直寫(xiě),但該制作效率非常低下,并且成本也不容小覷,在這種背景下人們把目光轉(zhuǎn)移到了無(wú)掩膜光刻技術(shù)。

    英國(guó)Durham Magneto Optics公司致力于研發(fā)小型臺(tái)式無(wú)掩膜光刻直寫(xiě)系統(tǒng)(MicroWriter ML3),為微流控、MEMS、半導(dǎo)體、自旋電子學(xué)等研究域提供方便的微加工方案。傳統(tǒng)的光刻工藝中所使用的鉻玻璃掩膜板需要由業(yè)供應(yīng)商提供,但是在研發(fā)過(guò)程中,掩膜板的設(shè)計(jì)通常需要根據(jù)實(shí)際情況多次改變。無(wú)掩膜光刻技術(shù)通過(guò)以軟件設(shè)計(jì)電子掩膜板的方法,克服了這問(wèn)題。與通過(guò)物理掩膜板進(jìn)行光照的傳統(tǒng)工藝不同,激光直寫(xiě)是通過(guò)電腦控制DMD微鏡矩陣開(kāi)關(guān),經(jīng)過(guò)光學(xué)系統(tǒng)調(diào)制,在光刻膠上直接曝光繪出所要的圖案。同時(shí)其還具備結(jié)構(gòu)緊湊(70cm X 70cm X 70cm)、高直寫(xiě)速度,高分辨率(XY:<1 um)的點(diǎn)。采用集成化設(shè)計(jì),全自動(dòng)控制,可靠性高,操作簡(jiǎn)便。

前沿進(jìn)展

() SMALL: 高性能的具備實(shí)際應(yīng)用前景的晶圓MoS2晶體管

    原子層的過(guò)渡金屬二硫化物(TMD)被認(rèn)為是下代半導(dǎo)體器件的重要研究熱點(diǎn)。然而,目前大部分的器件都是基于層間剝離來(lái)獲取金屬硫化物層,這樣只能實(shí)現(xiàn)微米的制備。在本文中,作者提出種用化學(xué)氣相沉積(CVD)制備多層MoS2薄層,進(jìn)而改善所制備器件的相關(guān)性能。采用四探針?lè)y(cè)量證明接觸電阻降低個(gè)數(shù)量。進(jìn)步,基于該法制備的連續(xù)大面積MoS2薄層,采用小型無(wú)掩膜光刻直寫(xiě)系統(tǒng)(MicroWriter ML3)構(gòu)筑了頂柵場(chǎng)效應(yīng)晶體管(FET)陣列。研究表明其閾值電壓和場(chǎng)效應(yīng)遷移率均有明顯的提升,平均遷移率可以達(dá)到70 cm2V-1s-1,可與層間剝離法制備的MoS2 FET結(jié)果相媲美。本工作創(chuàng)制了種規(guī)?;苽涠STMD功能器件和集成電路應(yīng)用的有效方法。 

 

 圖1. (a-e) 用CVD法制備大面積多層MoS2的原理示意及形貌結(jié)果。(g, h, i, j) 單層MoS2邊界及多層MoS2片層島的AFM測(cè)試結(jié)果,拉曼譜及光致發(fā)光譜結(jié)果

 

圖2. 用無(wú)掩膜激光直寫(xiě)系統(tǒng)(MicroWriter)在MoS2薄層上制備的多探針(二探針/四探針)測(cè)量系統(tǒng),以及在不同條件下測(cè)量的接觸電阻和遷移率結(jié)果。證明所制多層MoS2的平均遷移率可以達(dá)到70 cm2V-1s-1 

圖3. 用無(wú)掩膜光刻直寫(xiě)系統(tǒng)(MicroWriter)制備的大面積規(guī)模MoS2 FET陣列,及其場(chǎng)效應(yīng)遷移率和閾值電壓的分布性測(cè)量結(jié)果,證明該規(guī)模MoS2 FET陣列具備異且穩(wěn)定的均性 


 

(二) Adv. Funct. Mater.: 二維超薄非層狀Cr2S3納米片的氣相沉積制備與拉曼表征

    二維磁性材料在自旋磁電子學(xué)域展現(xiàn)出巨大的應(yīng)用價(jià)值,但是大部分已報(bào)道的磁性材料都是具備范德瓦爾斯作用的層狀結(jié)構(gòu),這種結(jié)構(gòu)可以通過(guò)簡(jiǎn)單的剝離方法獲得。與之相反,非層狀超薄磁性材料制備工藝復(fù)雜且非常,其中Cr2S3就是種典型的反鐵磁性非層狀材料。在本文中,作者通過(guò)改進(jìn)化學(xué)氣相沉積(CVD)方法,成功制備出超薄的非層狀Cr2S3納米片(厚度薄可達(dá)2.5 nm),并深入研究了材料的Raman振動(dòng)模式及熱導(dǎo)性,同時(shí)用無(wú)掩膜激光直寫(xiě)系統(tǒng)(MicroWriter)在材料表面制備電結(jié)構(gòu),測(cè)試系列相關(guān)電學(xué)性。

 

圖4. 超薄Cr2S3納米片的制備流程示意圖及其光學(xué)形貌和AFM表面形貌 

 

圖5. (a) SiO2/Si基底表面的Cr2S3納米片的AFM表面形貌,(b) 用MicroWriter在Cr2S3納米片上制備測(cè)量電,測(cè)量材料隨溫度變化的I-V性曲線,(c) 隨溫度變化的電導(dǎo)率測(cè)量結(jié)果及擬合曲線比較 

(三) Adv. Optical Mater.: 通過(guò)對(duì)全無(wú)機(jī)三鹵鈣鈦礦納米晶的調(diào)控,制備出性能良、空氣穩(wěn)定及可調(diào)諧的單分子層MoS2基混合光探測(cè)器件 

    全無(wú)機(jī)三鹵鈣鈦礦納米晶在過(guò)去的數(shù)年間受到廣泛的關(guān)注,基于其異的光物理性和環(huán)境穩(wěn)定性,該種新材料在混合光電器件研究域備受關(guān)注。在本文中,作者制備出種單層MoS2與三鹵鈣鈦礦納米晶結(jié)合的異質(zhì)結(jié)光電器件,通過(guò)調(diào)節(jié)鈣鈦礦膠體濃度和表面配體量,進(jìn)而實(shí)現(xiàn)調(diào)控該異質(zhì)結(jié)器件的光電性。在空氣環(huán)境中,該異質(zhì)結(jié)光電器件的光響應(yīng)可達(dá)6.4×105 mA/W,同時(shí)表現(xiàn)出異的熱穩(wěn)定性和工作穩(wěn)定性。 

 

圖6. CsPbBrPNC/monolayer MoS2異質(zhì)結(jié)光電器件的物理結(jié)構(gòu)及工作機(jī)理示意 

圖7. 不同溶液濃度的鈣鈦礦前驅(qū)體所制備得到的異質(zhì)結(jié)器件的光電性比較

 

    在該異質(zhì)結(jié)的制備過(guò)程中,需要在所制備的單層MoS2表面制備Cr/Au電,用小型無(wú)掩膜光刻直寫(xiě)系統(tǒng)(MicroWriter),可以將所設(shè)計(jì)的電圖案直接在MoS2層表面進(jìn)行曝光,避免由與制備圖形掩膜版所帶來(lái)的時(shí)間及工藝成本,同時(shí)用MicroWriter所有的虛擬掩膜對(duì)準(zhǔn)(Visual Mask Alignment, VMA)功能,可以在實(shí)際圖形曝光過(guò)程中,準(zhǔn)確地找到MoS2目標(biāo)位置,這樣大大地提高了實(shí)驗(yàn)設(shè)計(jì)和實(shí)施的靈活性。

 

圖8. CsPbBr3 PNC/monolayer MoS2異質(zhì)結(jié)光電器件的制備流程,紅色框所示為用無(wú)掩膜激光直寫(xiě)系統(tǒng)(MicroWriter)所制備電結(jié)構(gòu)示意

 

圖9. (左)用MicroWriter制備的MoS2基器件的I-V性曲線,其中所示單層MoS2形貌及表面電;(右)MicroWriter虛擬掩膜功能(VMA)結(jié)果示意

 

 

 

文獻(xiàn)匯總 

2019年:

[1] Leonardi F, Zhang Q, Kim Y H, et al. Solution-sheared thin films of a donor-acceptor random copolymer/polystyrene blend as active material in field-effect transistors[J]. Materials Science in Semiconductor Processing, 2019, 93: 105-110.

[2] Mortet V, Drbohlavova L, Lambert N, et al. Conductivity of boron-doped diamond at high electrical field[J]. Diamond and Related Materials, 2019, 98: 107476.

[3] Armistead F J, De Pablo J G, Gadêlha H, et al. Cells Under Stress: An Inertial-Shear Microfluidic Determination of Cell Behavior[J]. Biophysical journal, 2019, 116(6): 1127-1135.

[4] Salzillo T, Campos A, Mas-Torrent M. Solution-processed thin films of a charge transfer complex for ambipolar field-effect transistors[J]. Journal of Materials Chemistry C, 2019, 7(33): 10257-10263.

[5] Chen H, Liu G, Zhang S, et al. Fundus-simulating phantom for calibration of retinal vessel oximetry devices[J]. Applied optics, 2019, 58(14): 3877-3885.

[6] Zhang S, Xu H, Liao F, et al. Wafer-scale transferred multilayer MoS2 for high performance field effect transistors[J]. Nanotechnology, 2019, 30(17): 174002.

[7] Martin E L, Bryan M T, Pagliara S, et al. Advanced Processing of Micropatterned Elasto-Magnetic Membranes[J]. IEEE Transactions on Magnetics, 2019.

[8] Liu J, Singh A, Llandro J, et al. A low-temperature Kerr effect microscope for the simultaneous magneto-optic and magneto-transport study of magnetic topological insulators[J]. Measurement Science and Technology, 2019.

[9] Ye K, Liu L, Liu Y, et al. Lateral Bilayer MoS2–WS2 Heterostructure Photodetectors with High Responsivity and Detectivity[J]. Advanced Optical Materials, 2019: 1900815.

[10] Gilboa T, Zvuloni E, Zrehen A, et al. Automated, Ultra‐Fast Laser‐Drilling of Nanometer Scale Pores and Nanopore Arrays in Aqueous Solutions[J]. Advanced Functional Materials, 2019: 1900642.

[11] You H, Zhuo Z, Lu X, et al. 1T′-MoTe2-Based On-Chip Electrocatalytic Microdevice: A Platform to Unravel Oxidation-Dependent Electrocatalysis[J]. CCS Chemistry, 2019: 396-406.

[12] Fan X, Wei G, Lin X, et al. Phase-Change Based Interlayer Exchange Coupling Control[J]. arXiv preprint arXiv:1907.10784, 2019.

[13]Zhang Q, Leonardi F, Pfattner R, et al. A Solid‐State Aqueous Electrolyte‐Gated Field‐Effect Transistor as a Low‐Voltage Operation Pressure‐Sensitive Platform[J]. Advanced Materials Interfaces, 2019: 1900719.

[14] Yang R, Liu L, Feng S, et al. One-Step Growth of Spatially Graded Mo1-xWxS2 Monolayer with Wide Span in Composition (from x= 0 to 1) at Large Scale[J]. ACS applied materials & interfaces, 2019.

[15] Zhang L, Shen S, Li M, et al. Strategies for Air‐Stable and Tunable Monolayer MoS2‐Based Hybrid Photodetectors with High Performance by Regulating the Fully Inorganic Trihalide Perovskite Nanocrystals[J]. Advanced Optical Materials, 2019: 1801744.

[16] Zhou S, Wang R, Han J, et al. Ultrathin Non‐van der Waals Magnetic Rhombohedral Cr2S3: Space‐Confined Chemical Vapor Deposition Synthesis and Raman Scattering Investigation[J]. Advanced Functional Materials, 2019, 29(3): 1805880.

[17] Chen Y, Casals B, Sanchez F, et al. Solid-State Synapses Modulated by Wavelength-Sensitive Temporal Correlations in Optic Sensory Inputs[J]. ACS Applied Electronic Materials, 2019.

[18] Gu Y, Oliferenko S. Cellular geometry scaling ensures robust division site positioning[J]. Nature communications, 2019, 10(1): 268.

2018年:

[1] Wei G, Lin X, Si Z, et al. Optical control of magnetism in NiFe/VO2 heterostructures[J]. arXiv preprint arXiv:1805.02453, 2018.

[2] Davydova M, Taylor A, Hubík P, et al. Characteristics of zirconium and niobium contacts on boron-doped diamond[J]. Diamond and Related Materials, 2018, 83: 184-189.

[3] Campos A, Riera-Galindo S, Puigdollers J, et al. Reduction of charge traps and stability enhancement in solution-processed organic field-effect transistors based on a blended n-type semiconductor[J]. ACS applied materials & interfaces, 2018, 10(18): 15952-15961.

[4] Jia Z, Hu W, Xiang J, et al. Grain wall boundaries in centimeter-scale continuous monolayer WS2 film grown by chemical vapor deposition[J]. Nanotechnology, 2018, 29(25): 255705.

[5]Tarn M D, Sikora S N F, Porter G C E, et al. The study of atmospheric ice-nucleating particles via microfluidically generated droplets[J]. Microfluidics and nanofluidics, 2018, 22(5): 52.

[6] Jin B, Huang P, Zhang Q, et al. Self‐Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for High‐Performance Photodetectors[J]. Advanced Functional Materials, 2018, 28(20): 1800181.

[7] Vallès F, Palau A, Rouco V, et al. Angular flux creep contributions in YBa2Cu3O7−δ nanocomposites from electrical transport measurements[J]. Scientific reports, 2018, 8(1): 5924.

[8] L?pez-Mir L, Frontera C, Aramberri H, et al. Anisotropic sensor and memory device with a ferromagnetic tunnel barrier as the only magnetic element[J]. Scientific reports, 2018, 8(1): 861.

[9] Xu H, Zhang H, Guo Z, et al. High‐Performance Wafer‐Scale MoS2 Transistors toward Practical Application[J]. Small, 2018, 14(48): 1803465.

會(huì)員登錄

X

請(qǐng)輸入賬號(hào)

請(qǐng)輸入密碼

=

請(qǐng)輸驗(yàn)證碼

收藏該商鋪

X
該信息已收藏!
標(biāo)簽:
保存成功

(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

以上信息由企業(yè)自行提供,信息內(nèi)容的真實(shí)性、準(zhǔn)確性和合法性由相關(guān)企業(yè)負(fù)責(zé),化工儀器網(wǎng)對(duì)此不承擔(dān)任何保證責(zé)任。

溫馨提示:為規(guī)避購(gòu)買(mǎi)風(fēng)險(xiǎn),建議您在購(gòu)買(mǎi)產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量。

撥打電話
在線留言