您好, 歡迎來到化工儀器網(wǎng)! 登錄| 免費(fèi)注冊| 產(chǎn)品展廳| 收藏商鋪|
報(bào)告簡介:
隨著熱掃描探針光刻技術(shù)的進(jìn)步完善和發(fā)展,眾多的科研課題得到快速發(fā)展,例如2D材料器件的加工,熱輔助的材料變性,3D納米光學(xué)器件和3D納米光柵,納米顆粒組裝,運(yùn)輸以及分離,高精度納米結(jié)構(gòu)以及套刻,生物組織的復(fù)制用于干細(xì)胞生長研究等。為了使國內(nèi)更多的老師和同學(xué)們了解NanoFrazor的*功能以及在物理實(shí)驗(yàn)納米器件制備等方面的應(yīng)用,2021年3月25日 中國時間16:15由海德堡Nano的吳爭鳴博士用中文講解NanoFrazor的技術(shù)點(diǎn)、點(diǎn)和些應(yīng)用案例介紹。NanoFrazor技術(shù)起源于IBM蘇黎世,由Swiss Litho公司將該技術(shù)商業(yè)化,并生產(chǎn)制造用于研究的Explore和Scholar儀器。所使用的軟件和硬件都是基于NanoFrazor的點(diǎn)量身打造。2年前Swiss Litho加入Heidelberg Instruments為科學(xué)研究以及工業(yè)生產(chǎn)提供覆蓋納米到微米尺度、從熱探針到激光直寫的2D+3D微納加工方法。歡迎老師同學(xué)們參加講座并且和吳博士討論。
報(bào)名注冊:
PC端用戶點(diǎn)擊https://zoom.us/webinar/register/WN_IuOs0YKQRFy6NnzuAVyF3g報(bào)名 ,手機(jī)用戶請掃描上方二維碼進(jìn)入報(bào)名
主講人介紹:
吳爭鳴畢業(yè)于上海交通大學(xué),隨后在瑞士巴塞爾大學(xué)物理系師從Schoenenberg教授完成碩士和博士。2009年加入Nanosurf搭建AFM亞洲區(qū)銷售網(wǎng)絡(luò)。2014年在Swiss Litho公司成立初期加入,對NanoFrazor的技術(shù)、適用性和在納米制備方面的應(yīng)用都有非常透徹的了解。
報(bào)告時間:
2021年3月25日 09:15 CEST(北京時間16:15)
講座環(huán)節(jié): 30 min
問答環(huán)節(jié): 15 min
您將了解:
? 了解NanoFrazor技術(shù)的*性能和點(diǎn)
? 探討NanoFrazor應(yīng)用案例和用于納米制備的適用范圍
? 了解NanoFrazor用戶們使用儀器的實(shí)驗(yàn)課題以及受益于儀器的哪些殊功能
? 展望NanoFrazor技術(shù)的發(fā)展計(jì)劃
近期NanoFrazor用戶的發(fā)表文章列表以供參考:
1. 2020_Howell (Nature Micro Nano) Thermal Scanning Probe Lithography - A Review. https://doi.org/10.1038/s41378-019-0124-8
2. 2019_NF_Ryu (NanoScience and Technology) Oxidation and Thermal SPL review_MoS2 ribbons
3. 2020_NF_Meng (Adv. Mater.) Deterministic Assembly of Single Sub-20 nm Functional Nanoparticles Using a Thermally Modified Template with a Scanning Nanoprobe. https://doi.org/10.1002/adma.202005979
4. 2020_NF_Michel (Adv. Opt. Mat.) The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurface. https://doi.org/10.1002/adom.202001243
5. 2020_NF_Liu (NanoLetter)_Thermomechanical Nanostraining of Two-Dimensional Materials. https://dx.doi.org/10.1021/acs.nanolett.0c03358
6. 2020_NF_Zheng (Nat Comm)_Spatial defects nanoengineering for bipolar conductivity in MoS2. https://doi.org/10.1038/s41467-020-17241-1
7. 2020_NF_Liu (Advanced Materials) Thermomechanical Nanocutting of 2D Materials. https://doi.org/10.1002/adma.202001232
8. 2019_NF_Zheng (Nature Electronics) Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using tSPL. https://doi.org/10.1038/s41928-018-0191-0
9. 2020_NF_Lassaline (Nature) Optical Fourier Surfaces. https://doi.org/10.1038/s41586-020-2390-x
10. 2018_NF_Skaug (Science) Nanofluidic rocking Brownian motors. DOI: 10.1126/science.aal3271
11. 2018_NF_Schwemmer (PRL) Experimental Observation of Current Reversal in a Rocking Brownian Motor. DOI: 10.1103/PhysRevLett.121.104102
12. 2019_Fringes (Nano Lett. 8855-8861) Deterministic Deposition of Nanoparticles with Sub-10nm Resolution. https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b03687
13. 2019_NF_Hettler (Micron) Phase masks for electron microscopy fabricated by thermal scanning probe lithography
14. 2017_NF_Rawlings (Nature Scientific Reports) Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication. DOI:10.1038/s41598-017-16496-x
15. Cheng, B. et al. Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching. Communications Physics 2, 28 (2019). https://www.nature。。com/articles/s42005-019-0125-9
16. 2021_NF_ Liu (Adv. Func Mat) Cost and Time Effective Lithography of Reusable Millimeter. https://doi.org/10.1002/adfm.202008662
17. Tang (ACS App.Mat&Inetrf 2019) Replication of a Tissue Microenvironment by Thermal Scanning Probe Lithography. https://pubs.acs.org/doi/abs/10.1021/acsami.9b05553
18. Liu (Faraday Discussions 2019) High-throughput Enzyme Nanopatterning
19. 2020_NF_Albisetti (Adv Mat) Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets. https://doi.org/10.1002/adma.201906439
20. Albisetti, E. et al. Stabilization and control of topological magnetic solitons via magnetic nanopatterning of exchange bias systems. Appl. Phys. Lett. 113, 162401 (2018). https://doi.org/10.1063/1.5047222
21. Albisetti, E. et al. Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures. Communications Physics 1, 56 (2018). DOI: 10.1038/s42005-018-0056-x
請輸入賬號
請輸入密碼
請輸驗(yàn)證碼
以上信息由企業(yè)自行提供,信息內(nèi)容的真實(shí)性、準(zhǔn)確性和合法性由相關(guān)企業(yè)負(fù)責(zé),化工儀器網(wǎng)對此不承擔(dān)任何保證責(zé)任。
溫馨提示:為規(guī)避購買風(fēng)險,建議您在購買產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量。