技術(shù)文章
細(xì)胞壓力刺激加載文獻(xiàn),細(xì)胞壓縮力加載文獻(xiàn)
閱讀:613 發(fā)布時(shí)間:2019-12-26美國flexcell FX-5000C細(xì)胞壓力刺激加載文獻(xiàn),細(xì)胞壓縮力加載文獻(xiàn)
COMPRESSION SYSTEM AND COMPRESSION PLATES
Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D, Duterque-Coquillaud M, Mallein-Gerin F. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 7(5):e36964, 2012.
Abstract Article
Bougault C, Paumier A, Aubert-Foucher E, Mallein-Gerin F. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression. BMC Biotechnol 8:71, 2008.
Abstract Article
Chen X, Guo J, Yuan Y, Sun Z, Chen B, Tong X, Zhang L, Shen C, Zou J.Cyclic compression stimulates osteoblast differentiation via activation of the Wnt/β-catenin signaling pathway. Molecular Medicine Reports 15(5):2890-2896, 2017.
Abstract Article
Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A 20(23-24):3142-3153, 2014.
Abstract Article
Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells. Tissue Eng Part A 21(9-10):172032, 2015.
Abstract Article
Fermor B, Haribabu B, Weinberg JB, Pisetsky, Guilak F. Mechanical stress and nitric oxide influence leukotriene production in cartilage. Biochemical and Biophysical Research Communications 285:806–810, 2001.
Abstract Article
Fermor B, Weinberg JB, Pisetsky DS, Guilak F. The influence of oxygen tension on the induction of the nitric oxide and prostaglandin E2 by mechanical stress in articular cartilage. Osteoarthritis Cartilage 13:935941, 2005.
Abstract Article
Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ, Guilak F. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res 9(4):729-737, 2001.
Abstract Article
Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F. Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthritis Cartilage 10:792–798, 2002.
Abstract Article
Fink C, Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Guilak F. The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage 9(5):481-487, 2001.
Abstract Article
Fox DB, Cook JL, Kuroki K, Cockrell M. Effects of dynamic compressive load on collagen-based scaffolds seeded with fibroblast-like synoviocytes. Tissue Eng 12(6):1527-1537, 2006.
Abstract Article
Glaeser JD, Salehi K, Kanim LE, NaPier Z, Kropf MA, Cuellar J, Sheyn D, Bae HW. Treatment with the NFkB inhibitor reduces overloading-induced MMP expression in human nucleus pulposus cells. The Spine Journal 17(10):S127, 2017.
Abstract Article
Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Saffar JL, Jacques C. Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene. Arthritis Research & Therapy 8:R135, 2006.
Abstract Article
Graff RD, Lazarowski ER, Banes AJ, Lee GM. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum 43(7):1571-1579, 2000.
Abstract Article
Hamid T, Xu Y, Ismahil MA, Li Q, Jones SP, Bhatnagar A, Bolli R, Prabhu SD. TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. Am J Physiol Heart Circ Physiol 311(5):H1189-H1201, 2016.
Abstract Article
Hara M, Nakashima M, Fujii T, Uehara K, Yokono C, Hashizume R, Nomura Y. Construction of collagen gel scaffolds for mechanical stress analysis. Biosci Biotechnol Biochem 78(3):458-61, 2014. doi: 10.1080/09168451.2014.882749.
Abstract Article
Hazenbiller O, Duncan NA, Krawetz RJ. Reduction of pluripotent gene expression in murine embryonic stem cells exposed to mechanical loading or Cyclo RGD peptide. BMC Cell Biol 18(1):32, 2017. doi: 10.1186/s12860-017-0148-6.
Abstract Article
Hennerbichler A, Fermor B, Hennerbichler, Weinberg JB, Guilak F. Regional differences in prostaglandin E2 and nitric oxide production in the knee meniscus in response to dynamic compression. Biochemical and Biophysical Research Communications 358:1047–1053, 2007.
Abstract Article
Huang D, Liu YP, Huang YJ, Xie YF, Shen KH, Zhang DW, Mou Y. Mechanical compression up-regulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts. Connect Tissue Res 55(5-6):391-6, 2014. doi: 10.3109/03008207.2014.959118.
Abstract Article
Klymenko Y, Wates RB, Weiss-Bika H, Lombard R,Liu Y, Campbell L, Kim O, Wagner D, Ravosa MJ, Stack MS. Modeling the effect of ascites-induced compression on ovarian cancer multicellular aggregates. Dis Model Mech.2018 Sep 25; 11 (9).
Abstract Article
Kuroki K, Cook JL, Stoker AM, Turnquist SE, Kreeger JM, Tomlinson JL. Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression. Osteoarthritis Cartilage 13:225-234, 2005.
Abstract Article
Lee CY, Hsu HC, Zhang X, Wang DY, Luo ZP. Cyclic compression and tension regulate differently the metabolism of chondrocytes. J Musculoskeletal Res 9(2):59-64, 2005.
Abstract Article
Li D, Lu Z, Xu Z, Ji J, Zheng Z, Lin S, Yan T. Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress. Biosci Rep 36(4), 2016. pii: e00355.
Abstract Article
Li X, Dong J, Liu C, Wang X, An M, Chen W. Contributions of intermittent cyclic compression to proteoglycans synthesis and mechanical properties of knee articular cartilaginous tissue formed in vitro. Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference 4:1655-1658, 2010.
Abstract Article
Maxson S, Orr D, Burg K. Bioreactors for tissue engineering. Tissue Eng 179-197, 2011.
Abstract Article
Miki Y, Teramura T, Tomiyama T, Onodera Y, Matsuoka T, Fukuda K, Hamanishi C. Hyaluronan reversed proteoglycan synthesis inhibited by mechanical stress: possible involvement of antioxidant effect. Inflamm Res 59(6):471-477, 2010.
Abstract Article
Nettelhoff L, Grimm S, Jacobs C, Walter C, Pabst AM, Goldschmitt J, Wehrbein H. Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Investig 20(3):621-9, 2016. doi: 10.1007/s00784-015-1542-0. Epub 2015 Aug 6.
Abstract Article
Pecchi E, Priam S, Gosset M, Pigenet A, Sudre L, Laiguillon MC, Berenbaum F, Houard X. Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res Ther 16(1):R16, 2014. doi: 10.1186/ar4443.
Abstract Article
Piscoya JL, Fermor B, Kraus VB, Stabler TV, Guilak F. The influence of mechanical compression on the induction of osteoarthritis-related biomarkers in articular cartilage explants. Osteoarthritis Cartilage 13:10921099, 2005.
Abstract Article
Saminathan A, Sriram G, Vinoth JK, Cao T, Meikle MC. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain. Tissue Eng Part A 21(3-4):518-29, 2015.
Abstract Article
Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 17(4):473-481, 2009.
Abstract Article
Sanchez C, Pesesse L, Gabay O, Delcour JP, Msika P, Baudouin C, Henrotin YE. Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum 64(4):1193-203. 2012.
Abstract Article
Sharma R, Vinjamaram S, Shah VA, Gupta SK, Chalam KV. The effect of elevated atmospheric pressure on the survival of retinal ganglion cells using Flexcell biopress system. Invest Ophthalmol Vis Sci 44:E-Abstract 152, 2003.
Abstract Article
Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F. Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308-313, 2003.
Abstract Article
Tomiyama T, Fukuda K, Yamazaki K, Hashimoto K, Ueda H, Mori S, Hamanishi C. Cyclic compression loaded on cartilage explants enhances the production of reactive oxygen species. J Rheumatol 34(3):556-562, 2007.
Abstract Article
Uehara K, Hara M, Matsuo T, Namiki G, Watanabe M, Nomura Y. Hyaluronic acid secretion by synoviocytes alters under cyclic compressive load in contracted collagen gels. Cytotechnology 67(1):19-26, 2015. doi: 10.1007/s10616-013-9669-9.
Abstract Article
Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21(6):963-969, 2003.
Abstract Article
Werkmeister E, de Isla N, Netter P, Stoltz JF, Dumas D. Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy. Photochem Photobiol 86(2):302-310, 2010.
Abstract Article
Xu HG, Zhang W, Zheng Q, Yu YF, Deng LF, Wang H, Liu P, Zhang M. Investigating conversion of endplate chondrocytes induced by intermittent cyclic mechanical unconfined compression in three-dimensional cultures. European Journal of Histochemistry 58:2415, 2014.
Abstract Article
Zhou Q, Yu BH, Liu WC, Wang ZL. BM-MSCs and Bio-Oss complexes enhanced new bone formation during maxillary sinus floor augmentation by promoting differentiation of BM-MSCs. In Vitro Cell Dev Biol Anim 2016 Jun 1.
Abstract Article
APPLICATION OF COMPRESSION SYSTEM
Ackermann P, Schizas N, Bring D, Li J, Andersson T, Fahlgren A, Aspenberg P. Compression therapy promotes tissue repair and biomechanical properties during immobilization. J Bone Joint Surg Br 94B (Supp XXXVII) 89, 2012.
Abstract Article
美國flexcell FX-5000C細(xì)胞壓力刺激加載培養(yǎng)系統(tǒng)介紹:
為組織、三維細(xì)胞培養(yǎng)物提供周期性或靜態(tài)壓力加載和實(shí)時(shí)觀察
適用樣品:細(xì)胞或組織
樣品模式:3D水凝膠包埋細(xì)胞或組織
壓力模式:真空頂擠壓力培養(yǎng)板的基底硅膠膜使樣品受壓
實(shí)時(shí)觀察:StagePress顯微附屬設(shè)備可在顯微鏡下觀察壓力作用下反應(yīng)
方便對(duì)照:可使同一塊培養(yǎng)板力的一部分細(xì)胞受力,一部分不受力
多同壓縮條件作用對(duì)照:可同時(shí)運(yùn)行多個(gè)不同壓力大小、不同頻率
不同加載周期程序,方便對(duì)比;
軟件精準(zhǔn)調(diào)控:對(duì)壓縮加載周期、壓力大小、頻率、波形智能調(diào)控
壓力范圍:0.1-14磅
壓縮頻率:0.01- 5 Hz
細(xì)胞量大便于后期分析:每個(gè)壓力傳導(dǎo)儀支持4塊6孔壓力板(1*104 -
1*105懸浮細(xì)胞/ml水凝膠),系統(tǒng)同時(shí)兼容4個(gè)FlexLink壓力傳導(dǎo)儀,
獨(dú)立操作四個(gè)不同的實(shí)驗(yàn)程序 。
支持任何波形種類:可以更好地控制超低或超高壓力下的波形