請輸入產(chǎn)品關(guān)鍵字:
郵編:200431
聯(lián)系人:王小姐
電話:021-56640936
傳真:021-33250231
手機(jī):13122441390 15900755943
留言:發(fā)送留言
個性化:www.shifengsj.com
網(wǎng)址:www.shfeng-edu.com
商鋪:http://true-witness.com/st236594/
上海士鋒生物利用大腸桿菌生產(chǎn)石油替代物新突破
最近更新時間:2013-4-28
提 供 商:上海士鋒生物科技有限公司資料大?。?/span>15.8KB
文件類型:JPG 圖片下載次數(shù):141次
資料類型:瀏覽次數(shù):1114次
生物能源是減輕碳?xì)浠衔锶剂弦蕾囆缘膠ui直接zui有效的方式,但是目前的生物能源(酒精和生物柴油)需要特殊的下游工藝過程,并不能*與現(xiàn)代的,大眾市場的內(nèi)燃機(jī)相容。人們渴望找到的理想的生物能源在結(jié)構(gòu)和化學(xué)性質(zhì)上與化石燃料相同(如不同鏈長的脂肪族正或異烷烴)。
本研究報道了利用大腸桿菌生產(chǎn)石油替代品碳?xì)浠衔锏姆椒?。研究人員將發(fā)光桿菌(Photorhabdus luminescens)中的脂肪酸還原酶復(fù)合物與念球藻(Nostoc punctiforme)中的醛基脫羧酶偶聯(lián),可以利用游離的脂肪酸作為烷烴合成的底物,發(fā)現(xiàn)這種基因組合可以使得碳?xì)滏滈L(Cn)和支鏈烷烴通過上游的脂肪酸池的基因和外源性增殖來發(fā)生合理的改變。
當(dāng)在含有多種脂肪酸的組合的培養(yǎng)基中生長的時候,或者當(dāng)修改這種大腸桿菌從而表達(dá)額外基因的時候,這種經(jīng)過改造的大腸桿菌產(chǎn)生了在結(jié)構(gòu)和化學(xué)性質(zhì)上與10種零售柴油燃料的碳?xì)浠衔?u>分子相同的分子,而這10種零售柴油燃料通常在溫帶的氣候條件下被使用。這些發(fā)現(xiàn)表明通過人工分子路徑來生產(chǎn)可再生的工業(yè)燃料成分的方法。
Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli
Thomas P. Howard, Sabine Middelhaufe, Karen Moore, Christoph Edner, Dagmara M. Kolak, George N. Taylor, David A. Parker, Rob Lee, Nicholas Smirnoff, Stephen J. Aves, and John Love
Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules.