抑制癌細(xì)胞的限速生脂酶研究進(jìn)展
限速生脂酶,包括乙酰-CoA 羧化酶 (ACC)、脂肪酸合成酶 (FAS)、ATP-檸檬酸裂解酶 (ACLY) 和硬脂酰 CoA 去飽和酶 (SCD) 。脂類,包括脂肪、蠟、固醇和脂溶維生素等。近年來(lái),我們對(duì)脂質(zhì)在癌變過(guò)程(正常細(xì)胞轉(zhuǎn)變?yōu)榘┘?xì)胞的過(guò)程)中的作用的理解有了重大進(jìn)展1。當(dāng)正常細(xì)胞逃避控制其生長(zhǎng)的過(guò)程時(shí),腫瘤就會(huì)發(fā)生。長(zhǎng)期以來(lái)的研究表明,癌細(xì)胞的特征是脂質(zhì)合成增加,這主要是因?yàn)榉至鸭?xì)胞的細(xì)胞膜需要脂質(zhì),因此開發(fā)針對(duì)脂質(zhì)生成反應(yīng)限速步驟的癌癥療法是合乎邏輯的。有一篇很好的綜述介紹了脂質(zhì)代謝與癌癥的關(guān)系,其中有大量的背景資料和詳實(shí)的插圖2,另一篇綜述則對(duì)脂質(zhì)生成抑制劑的治療前景和挑戰(zhàn)提出了更多見解3。本期通訊將重點(diǎn)介紹治療癌癥的生脂酶抑制劑的最新進(jìn)展。
1.癌細(xì)胞中的脂類代謝
脂類在脂肪細(xì)胞和肝細(xì)胞中合成,其中一些脂質(zhì),如α-亞麻酸和亞油酸,哺乳動(dòng)物無(wú)法從頭制造,需要從食物中獲取。癌細(xì)胞傾向于制造自己的脂類,這使得它們可以繞過(guò)強(qiáng)加給其他細(xì)胞的一些生長(zhǎng)限制。它們?cè)谝阴?CoA 羧化酶 (ACC)、脂肪酸合成酶 (FAS)、ATP-檸檬酸裂解酶 (ACLY) 和硬脂酰 CoA 去飽和酶 (SCD) 等限速生脂酶水平升高的幫助下做到了這一點(diǎn)4。除細(xì)胞生長(zhǎng)外,腫瘤還以多種方式利用脂質(zhì),包括致癌信號(hào),這凸顯了癌癥中脂質(zhì)代謝的復(fù)雜性。腫瘤細(xì)胞可增加新脂肪的生成、脂肪酸的攝取和脂肪酸的氧化,以產(chǎn)生能量和積累脂肪。癌癥通過(guò)改變脂質(zhì)代謝來(lái)調(diào)節(jié)鐵蛋白沉積介導(dǎo)的細(xì)胞死亡、支持轉(zhuǎn)移以及與腫瘤微環(huán)境的相互作用2。不幸的是,健康的組織,特別是免疫系統(tǒng)中的健康組織,也需要脂質(zhì),這就限制了一般代謝抑制劑的效用5。
圖1:脂肪酸合成和可能成為潛在藥物靶點(diǎn)的關(guān)鍵酶示意圖。
2.乙酰-CoA羧化酶
乙酰-CoA羧化酶(ACCs)有兩種異構(gòu)體:ACC1和ACC2,又稱 ACCα 和 ACCβ,是哺乳動(dòng)物新陳代謝的核心酶,能夠介導(dǎo)脂肪酸合成、糖酵解和其他碳轉(zhuǎn)化(圖 1)。ACCs將乙酰-CoA轉(zhuǎn)化為丙二酰-CoA6,這些酶有望成為癌癥治療的靶點(diǎn)。在一些癌細(xì)胞中的 ACC 水平升高,一些小分子抑制劑已進(jìn)入臨床試驗(yàn)的不同階段。ND-646可以阻斷這兩種異構(gòu)體,從而阻止非小細(xì)胞肺癌的發(fā)展7,8。肝臟特異性ND-654在小鼠身上進(jìn)行了測(cè)試,發(fā)現(xiàn)它能減少肝細(xì)胞腫瘤11。當(dāng)這些抑制劑與標(biāo)準(zhǔn)化療一起測(cè)試時(shí),它們抑制腫瘤生長(zhǎng)的效果比未聯(lián)合治療的效果更好8,9。有關(guān) ACCs 在疾病調(diào)控中的作用的更多信息,請(qǐng)參閱 Wang 等人最近的一篇綜述10。
3.脂肪酸合成酶
脂肪酸合成酶(FAS)通過(guò)連續(xù)添加乙?;鶃?lái)構(gòu)建脂質(zhì)碳鏈,最終生成棕櫚酸酯(圖1),因此,這種酶是另一個(gè)有吸引力的抗癌抑制靶點(diǎn)。這種酶的上調(diào)與多種癌癥有關(guān),F(xiàn)AS 抑制劑 Fasnall 在小鼠模型中可抑制乳腺癌,無(wú)論是單獨(dú)使用還是與卡鉑聯(lián)合使用11。然而,F(xiàn)asnall 體現(xiàn)了針對(duì)單一代謝途徑進(jìn)行癌癥治療的復(fù)雜性,它似乎減少了一半的體外乳腺癌腫瘤,但是增加了另一半,因此有人建議需要針對(duì)多種代謝途徑進(jìn)行治療,作為常規(guī)治療的補(bǔ)充12。奧美拉唑是一種非處方藥,可用于控制胃灼熱,它是一種溫和的FAS抑制劑,副作用很少,因此已被重新用于癌癥治療。目前,它正被用于多種癌癥的臨床試驗(yàn)2。小干擾RNA(SiRNA)是一種小片段的RNA,可通過(guò)與特定的 mRNA 結(jié)合并使其失活,從而特異性地抑制蛋白質(zhì)的產(chǎn)生。其中一種靶向 FASN 翻譯的 siRNA ,在小鼠模型中減少腫瘤方面顯示出了良好的治療效果。最近的一篇綜述介紹了針對(duì)處于應(yīng)激狀態(tài)的癌細(xì)胞的脂肪酸代謝13。
4.ATP-檸檬酸裂解酶
ATP-檸檬酸裂解酶(ACLY)將檸檬酸鹽轉(zhuǎn)化為乙酰-CoA和草酰乙酸酯(圖1)。這種酶在包括肺癌14和肝癌15在內(nèi)的多種癌癥中高度表達(dá),抑制這種酶可抑制癌癥16。最近有一篇綜述專門對(duì) ACLY 抑制劑作為癌癥治療的臨床和臨床前應(yīng)用進(jìn)行了闡述17。ACLY抑制劑BMS-303141成功地抑制了肝細(xì)胞癌(HCC)18。小分子ACLY抑制劑ETC-1002已經(jīng)在多種非癌癥疾病的臨床試驗(yàn)中得到了深入的研究。ETC-1002在肝臟中被修飾,這對(duì)其活性非常重要9。組織特異性是抗癌藥物非常理想的特性,ETC-1002 與FGFR1抑制劑 PD173074 或PD-L1聯(lián)用,可減少肝細(xì)胞癌的發(fā)生20。腸道微生物衍生的乙酰-CoA 可繞過(guò) ACLY 抑制,這一點(diǎn)在治療肝癌時(shí)尤為重要21。然而,ETC-1002也可以激活A(yù)MPK,AMPK通過(guò)抑制乙酰-CoA 羧化酶來(lái)減緩脂肪生成19。因此,ETC-1002值得進(jìn)一步研究。
5.硬脂酰-CoA 去飽和酶
棕櫚酸是一種豐富的飽和脂肪酸,可被硬脂酰-CoA 不飽和酶(SCD;圖1)去飽和,并生成棕櫚油酸22。飽和脂肪酸與不飽和脂肪酸的比例在腫瘤細(xì)胞中處于微妙的平衡狀態(tài),破壞這種平衡可以殺死腫瘤細(xì)胞23,24。腫瘤的生長(zhǎng)速度往往會(huì)超過(guò)正常血管的形成速度,這就需要腫瘤形成新的血管來(lái)獲得營(yíng)養(yǎng)和氧氣。細(xì)胞中氧氣的耗盡會(huì)導(dǎo)致不飽和脂肪酸的合成不足,從而導(dǎo)致細(xì)胞死亡25。新的SCD抑制劑正在進(jìn)行臨床前癌癥試驗(yàn),其中 MF-438 和 CAY 10566 可通過(guò)改變膜磷脂組成減少卵巢癌的發(fā)生26。雖然A939572能減少原發(fā)性黑色素瘤的生長(zhǎng),但卻增加了肺轉(zhuǎn)移27,這提示了我們新陳代謝途徑是如何相互關(guān)聯(lián)的。
6.未來(lái)展望——脂質(zhì)酶與癌細(xì)胞轉(zhuǎn)移
癌細(xì)胞轉(zhuǎn)移的過(guò)程是一個(gè)復(fù)雜的過(guò)程,很少有細(xì)胞能完成轉(zhuǎn)移。能完成轉(zhuǎn)移的細(xì)胞依賴于脂質(zhì)代謝,但有關(guān)這些脂質(zhì)酶對(duì)轉(zhuǎn)移的影響的數(shù)據(jù)卻很復(fù)雜。例如,抑制ACCs會(huì)增加Acytl-CoA的水平,這可能會(huì)抑制 ACC1 刺激的乳腺癌轉(zhuǎn)移28。一些轉(zhuǎn)移到大腦的癌癥會(huì)選擇缺乏脂質(zhì)的區(qū)域,因?yàn)檫@些癌細(xì)胞可以制造自己的脂質(zhì);因此,靶向 FAS 能有效防止轉(zhuǎn)移到腦部的乳腺癌細(xì)胞存活29。一般說(shuō)來(lái),癌細(xì)胞的特點(diǎn)是脂代謝升高,這是由限速生脂酶控制的。不幸的是,健康的細(xì)胞也需要脂質(zhì),所以我們的目標(biāo)是減緩而不是停止這些關(guān)鍵酶的活性,這樣做往往會(huì)減緩癌癥的生長(zhǎng)。通過(guò)小分子抑制劑抑制脂質(zhì)代謝的變化已經(jīng)成為癌癥研究的一個(gè)有廣闊前景的領(lǐng)域2。
參考文獻(xiàn):
1.Williams S, Lawrence T. 2017. Lipids in cancer: A review. Nutrients, 9(3), 229.
2.Broadfield LA, Pane AA, Talebi A, et al. 2021. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell, 56(10), 1363-1393.
3.Batchuluun B, Pinkosky SL, Steinberg GR. 2022. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov 21, 283–305
4.Ackerman D, Simon MC. 2014. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol 24(8), 472–478.
5.Stine ZE, Schug ZT, Salvino JM, et al. 2022. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 21, 141–162 6.Assante G, Chandrasekaran S, Ng S. et al. 2022. Acetyl-CoA metabolism drives epigenome change and contributes to carcinogenesis risk in fatty liver disease. Genome Med. 14, 67
7.Li EQ, Zhao W, Zhang C. et al. 2019. Synthesis and anti-cancer activity of ND-646 and its derivatives as acetyl-CoA carboxylase 1 inhibitors. Eur. J. Pharm. Sci. 2019,137: 105010
8.Svensson RU, Parker SJ, Eichner LJ, et al. 2016. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108-1119
9.Lally JSV, Ghoshal S, DePeralta DK, et al. 2019. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 29, 174-182.e5
10.Wang Y, Yu W, Li S, et al. 2022. Acetyl-CoA carboxylases and diseases. Frontiers in Oncology, 12, 836058.
11.Alwarawrah Y, Hughes P, Loiselle D, et al. 2016. Fasnall, a selective FASN inhibitor, shows potent anti-tumor activity in the MMTV-Neu model of HER2+ breast cancer. Cell Chem. Biol. 23,678-688
12.Micallef P, Wu Y, Bauzá-Thorbrügge M, et al. 2021. Adipose Tissue—Breast Cancer Crosstalk Leads to Increased Tumor Lipogenesis Associated with Enhanced Tumor Growth. International Journal of Molecular Sciences. 22(21),11881.
13.Munir R, Lisec J, Swinnen JV, et al.2019. Lipid metabolism in cancer cells under metabolic stress. Br J Cancer120, 1090–1098.
14.Migita T, Narita T, Nomura K, et al. 2008. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 68, 8547-8554
15.Calvisi DF, Wang C, Ho C, et al. 2011. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology.140, 1071-1083
16.Hatzivassiliou, G, Zhao, F, Bauer DE et al. 2005. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321.
17.Granchi C. 2018. ATP citrate lyase (ACLY) inhibitors: an anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur. J. Med. Chem. 157, 1276-1291
18.Zheng Y, Zhou Q, Zhao C et al. 2021. ATP citrate lyase inhibitor triggers endoplasmic reticulum stress to induce hepatocellular carcinoma cell apoptosis via p-eIF2α/ATF4/CHOP axis. J Cell Mol Med. 25, 1468– 1479.
19.Pinkosky SL, Newton RS, Day EA, et al. 2016. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat. Commun. 7, 13457
20.Zhou Y, Tao J, Calvisi DF, Chen X. 2022. Role of Lipogenesis Rewiring in Hepatocellular Carcinoma. Semin Liver Dis. 42(1),77-86. doi: 10.1055/s-0041-1731709.
21.Zhao S, Jang C, Liu J, et al. 2020. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 579, 586-591
22.Vriens K, Christen S, Parik S, et al. 2019. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature. 566, 403-406
23.Friedmann Angeli JP, Krysko DV, Conrad M, 2019. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer. 19, 405-414
24.Rysman E, Brusselmans K, Scheys K, et al. 2010. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70, 8117-8126
25.Young RM, Ackerman D, Quinn ZL. et al. 2013. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev. 27, 1115-1131
26.Tesfay L, Paul BT, Konstorum A, et al. 2019. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 79, 5355-5366
27.Vivas-García Y, Falletta P, Liebing J, et al. 2020. Lineage-restricted regulation of SCD and fatty acid saturation by MITF controls melanoma phenotypic plasticity. Mol. 77, 120-137.e9
28.Rios Garcia M, Steinbauer B, Srivastava K, et al. 2017. Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metab. 26,842-855.e5
29.Menendez JA, Lupu R. 2022. Fatty acid synthase: a druggable driver of breast cancer brain metastasis, Expert Opinion on Therapeutic Targets 26(5)427-444, DOI: 10.1080/14728222.2022.2077189
部分相關(guān)產(chǎn)品推薦:
1.New LipiBrightTM Fluorogenic Lipid Droplet Probes
貨號(hào) | 名稱 | 相關(guān)應(yīng)用 | 規(guī)格 |
MG11 | LipiBright™ 530 SMCy3.5: Fluorogenic Lipid Droplet Probe ex 530 em 558 70 nmoles (MEMBRIGHT Family Probe) | 對(duì)培養(yǎng)中的活細(xì)胞脂滴進(jìn)行標(biāo)記 | 70 nmoles |
MG12 | LipiBright™ 650 SMCy5.5: Fluorogenic Lipid Droplet Probe ex 650 em 670 70 nmoles (MEMBRIGHT Family Probe) | 70 nmoles | |
MG13 | LipiBright™ 700 SMCy7.0: Fluorogenic Lipid Droplet Probe ex 700 em 770 70 nmoles (MEMBRIGHT Family Probe) | 70 nmoles |
2.MemGlow™ Plasma Membrane Probes
貨號(hào) | 名稱 | 相關(guān)應(yīng)用 | 規(guī)格 |
MG01-02 | MemGlow 488 - Fluorogenic Plasma Membrane probe ex 499 em 507 50-300 slides (MEMBRIGHT Family Probe) | 標(biāo)記培養(yǎng)中活細(xì)胞的質(zhì)膜 | 50-300 slides |
MG02-02 | MemGlow 560 - Fluorogenic Plasma Membrane probe ex 555 em 570 50-300 slides (MEMBRIGHT Family Probe) | 50-300 slides | |
MG03-02 | MemGlow 590 - Fluorogenic Plasma Membrane probe ex 580 em 620 50-300 slides (MEMBRIGHT Family Probe) | 50-300 slides | |
MG04-02 | MemGlow 640 - Fluorogenic Plasma Membrane probe ex 650 em 673 50-300 slides (MEMBRIGHT Family Probe) | 50-300 slides | |
MG05-02 | MemGlow 700 - Fluorogenic Plasma Membrane probe ex 650 em 720 50-300 slides (MEMBRIGHT Family Probe) | 50-300 slides |
關(guān)于Cytoskeleton
Cytoskeleton作為專業(yè)的細(xì)胞骨架和小G蛋白相關(guān)產(chǎn)品的生物科技公司,可以提供專業(yè)且高度可靠的Pulldown和GLISA檢測(cè)試劑盒,在過(guò)去的20年里,無(wú)數(shù)各個(gè)領(lǐng)域的研究人員已經(jīng)利用Cytoskeleton的產(chǎn)品產(chǎn)出許多優(yōu)秀的實(shí)驗(yàn)成果。
上海優(yōu)寧維生物科技股份有限公司
試劑 | 耗材 | 儀器 | 軟件 | 定制 | 實(shí)驗(yàn)服務(wù) | 供應(yīng)鏈
微信公眾平臺(tái):優(yōu)寧維抗體專家,歡迎關(guān)注!
小優(yōu)博士(小程序):5大課堂, 讓你的科研不再難!