上海奧法美嘉生物科技有限公司

高壓微射流均質(zhì)機(jī)處理制備納米纖維素

時(shí)間:2023-7-6 閱讀:1068
分享:

1.  引言


纖維素資源是自然界中豐富的可生物降解的聚合物資源,纖維素的組成成分是葡萄糖等碳水化合物。纖維素的原料包含范圍很廣,大多數(shù)的生物質(zhì)資源例如:稻麥草、蔗渣、堅(jiān)果殼、木薯、竹子、花生殼等。纖維素可被制備成納米纖維應(yīng)用于復(fù)合材料中或作為增強(qiáng)劑與高分子復(fù)合以提高高分子材料的機(jī)械性能[1-6]。


納米纖維素具有可生物降解、均一性、穩(wěn)定性以及可分散性等特點(diǎn),可以作為其它納米粒子的分散劑如納米二氧化硅、碳納米管、納米銀線等。再者,其在高分子增強(qiáng)材料、醫(yī)用材料、印刷包裝材料、環(huán)保材料等領(lǐng)域被廣泛應(yīng)用[7,8]。此外,納米纖維素還具有高透明性可應(yīng)用于光電材料、數(shù)顯材料等。


根據(jù)制備方法或者制備的納米纖維素的特性不同,納米纖維素主要分為兩種形態(tài):纖維素納米晶(Cellulose nanocrystals,CNC)和纖維素納米纖絲(Cellulose nanofibrils,CNF)。 通過對(duì)纖維原料進(jìn)行化學(xué)或者酶解處理,去除無(wú)定形區(qū)可以得到CNC,寬度幾十納米,長(zhǎng)度50~500 nm,CNC具有良好的機(jī)械強(qiáng)度、特殊的光學(xué)性能和自組裝性能,在復(fù)合材料、導(dǎo)電液晶材料、熒光傳感材料等領(lǐng)域具有潛在應(yīng)用[9-11]。


通過機(jī)械處理(高速盤磨、高壓均質(zhì)或者微射流處理)可以得到CNF,寬度小于100 nm,長(zhǎng)度500 nm以上,長(zhǎng)徑比高,具有較大的比表面積、良好的機(jī)械性能和低導(dǎo)熱系數(shù),在吸附材料、柔性電池及柔性顯示器、超級(jí)電容器隔膜紙和太陽(yáng)能電池裝置材料等方面潛力巨大[12-14]。


CNF的制備方法包括盤磨法、球磨法、微射流法、高壓均質(zhì)法和雙螺旋擠出法等[15-19],以上方法中高速盤磨、高壓均質(zhì)和微射流處理最為常見


高速盤磨處理是通過超微粒粉碎機(jī)中的靜態(tài)磨石與動(dòng)態(tài)磨石之間產(chǎn)生的碾壓、撕裂剪切作用,經(jīng)過幾次循環(huán)往復(fù)的剪切搓揉作用,纖維徑向尺寸可達(dá)到納米級(jí)別,超微粒粉碎機(jī)兩塊磨石的間隙、處理時(shí)間和轉(zhuǎn)速會(huì)影響CNF的尺寸,盤磨處理可以不需要對(duì)纖維進(jìn)行預(yù)處理,設(shè)備拆卸和清洗較為方便,但是在處理過程中,CNF粒徑不均一、分散性差且結(jié)晶度有所下降[20-21]。  


高壓均質(zhì)處理是一定濃度的纖維素懸浮液被高壓往復(fù)泵輸送至工作閥區(qū)間,通過均質(zhì)閥失壓形成空穴效應(yīng)產(chǎn)生高剪切作用使得纖維納米纖絲化[22]。高壓均質(zhì)處理最為常用,易于工業(yè)生產(chǎn),但是在操作過程中長(zhǎng)纖維容易堵塞閥門,特別是在串聯(lián)的閥門,必須分解開清洗,影響制備效率,同時(shí)能量消耗比較大。


高壓微射流均質(zhì)機(jī)通過氣動(dòng)或電液傳動(dòng)的增壓器使纖維素懸浮液在高壓作用下以極大的速度流經(jīng)固定幾何結(jié)構(gòu)均質(zhì)腔中的微管通道,在均質(zhì)腔中纖維受到超高剪切力、高碰撞力、空穴效應(yīng)等物理作用,使其微纖化,經(jīng)過多次循環(huán)實(shí)現(xiàn)纖維的解離,所產(chǎn)生的壓力越大,纖維納米纖絲化程度越高[23]相比于高壓均質(zhì),微射流處理減少了堵塞的程度,可制備得到直徑較為均一的CNF[24],但如果纖維過長(zhǎng)也會(huì)發(fā)生腔體堵塞,采用反沖方式可以解決這一問題。



2.  實(shí)驗(yàn)及結(jié)果分析


使用一定的化學(xué)方法及高剪切機(jī)械方法對(duì)纖維素樣品進(jìn)行預(yù)處理,得到微米級(jí)別的樣品。然后將預(yù)處理后的樣品通過意大利PSI-20高壓微射流均質(zhì)機(jī)處理,并采用全自動(dòng)顆粒計(jì)數(shù)儀進(jìn)行粒度分析。此次實(shí)驗(yàn)采用均質(zhì)壓力:2000bar,均質(zhì)8次,其結(jié)果如下所示:


圖1 2000bar均質(zhì)壓力下均質(zhì)不同次數(shù)時(shí)纖維素樣品數(shù)量粒徑分布結(jié)果 藍(lán)色為均質(zhì)1次的粒徑分布結(jié)果,紅色為均質(zhì)3次的粒徑分布結(jié)果,黑色為均質(zhì)8次的粒徑分布結(jié)果,黃色為原液的粒徑分布結(jié)果。



圖1為2000bar均質(zhì)壓力下均質(zhì)不同次數(shù)時(shí)纖維素樣品數(shù)量粒徑分布結(jié)果,結(jié)果通過 AccuSizer A7000 系列顆粒計(jì)數(shù)器獲得。從圖中可以看到,在未用微射流均質(zhì)前,樣品在2~50 μm處明顯有峰,此外,在0.7~2μm處也有峰。在2000bar下進(jìn)行均質(zhì), 隨著均質(zhì)的進(jìn)行,2~50μm處的峰依次降低(綠色箭頭),0.7~2μm處的峰依次增加(紅色箭頭)。說明在經(jīng)過微射流均質(zhì)處理后粒徑逐漸變?。ㄋ{(lán)色箭頭),越來越多的大的粒徑部分處理成小粒徑。


圖2 為2000bar均質(zhì)壓力下均質(zhì)不同次數(shù)時(shí)纖維素樣品實(shí)物圖,從圖中可以看到,在原液中明顯有肉眼可見的近似絮狀纖維存在,透明度較低,隨著均質(zhì)的進(jìn)行透明度越來越高,在2000bar微射流均質(zhì)8次后,得到的樣品有近似淡淡熒光色狀,整體液體狀態(tài)更為細(xì)膩。


圖2 2000bar均質(zhì)壓力下均質(zhì)不同次數(shù)時(shí)纖維素樣品實(shí)物圖


表1是均質(zhì)不同次數(shù)下,不同尺寸粒徑濃度。從表1中可知:原液中≥5μm,≥10μm,≥25μm,≥50μm 濃度較高,在2000bar微射流均質(zhì)處理8次后其濃度均有數(shù)量級(jí)的降低,說明在微射流均質(zhì)的處理下,粒徑進(jìn)一步降低,大尺寸的纖維進(jìn)一步變小。這一結(jié)果也與均質(zhì)后的實(shí)物圖表現(xiàn)一致。AccuSizer A7000系列具有32自定義通道,可根據(jù)需求同一時(shí)間可任意設(shè)定32個(gè)不同尺寸規(guī)格的通道,便于快速對(duì)比均質(zhì)效果。



樣品品名

≥0.5μm

(#/mL)

≥1μm

(#/mL)

≥2μm

(#/mL)

≥5μm

(#/mL)

≥10μm

(#/mL)

≥25μm

(#/mL)

≥50μm

(#/mL)

原液

15828120

11760390

6241950

2107594

589973

68615

6748

均質(zhì)1次

44063020

30514442

12967785

3382875

724745

30094

383

均質(zhì)3次

63550580

38208244

10919417

1693313

201989

6168

308

均質(zhì)8次

72675264

34119676

6862651

660896

51062

1939

323


表2 2000bar均質(zhì)壓力下均質(zhì)不同次數(shù)時(shí)纖維素樣品數(shù)量粒徑分布結(jié)果匯總

2000bar均質(zhì)0次

2000bar均質(zhì)1次

2000bar均質(zhì)3次2000bar均質(zhì)8次





4.  儀器介紹




參考資料


[1]I K Varma,D.S.V.,M Varma,Thermal behaviour of coir fibres[J].Thermochim.Acta,1986.108:199-210.

[2]Prashant,K.,Mechanical behavior of jute fibers and their composites[J].Indian J.Technol,1986.24:29-32.

[3]Moothoo,J.,et al.,A study of the tensile behaviour of flax tows and their potential forcomposite processing[J].Materials&Design,2014.55:764-772.

[4]曲萍,納米纖維素/聚乳酸復(fù)合材料及界面相容性研究[D].北京林業(yè)大學(xué),2013.

[5]Wang,F.,et al.,The effect of elementary fibre variability on bamboo fibre strength[J]. Materials&Design,2015.75:136-142.

[6]De Rosa,I.M.,et al.,Morphological,thermal and mechanical characterization of okra(Abelmoschus esculentus)fibres as potential reinforcement in polymer composites[J]

[7]Graupner,N.,A.S.Herrmann,and J.Mussig,Natural and man-made cellulosefibre-reinforced poly(lactic acid)(PLA)composites:An overview about mechanicalcharacteristics and application areas[J]. Composites Part a-Applied Science and Manufacturing,2009.40(6):810-821. [8]Czaja,W.K.,et al.,The future prospects of microbial cellulose in biomedical applications[J].Biomacromolecules,2007.8(1):1-12.

[9] Chen Q, Liu P, Nan F C, Zhou L J, Zhang J M. Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique [J].  Biomacromolecules, 2014, 15(11): 4343-4350.

[10] Yao K, Meng Q J, Bulone V, Zhou Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color [J]. Advanced Materials. 2017, 29(28): 1701323.

[11] Zhang L F, Lyu S Y, Zhang Q J, Wu Y T, Melcher C, Chmely S C, Chen Z L, Wang S Q. Dual-emitting film with cellulose nanocrystal-assisted carbon dots grafted SrAl2O4, Eu2+, Dy3+ phosphors for temperature sensing [J]. Carbohydrate Polymers, 2019, 206: 767-777.

[12] Jiang F, Liu H, Li Y J, Kuang Y D, Xu X, Chen C J, Huang H, Jia C, Zhao X P, Hitz E, Zhou Y B, Yang R G, Cui L F, Hu L B. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficie


會(huì)員登錄

×

請(qǐng)輸入賬號(hào)

請(qǐng)輸入密碼

=

請(qǐng)輸驗(yàn)證碼

收藏該商鋪

X
該信息已收藏!
標(biāo)簽:
保存成功

(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~
撥打電話 產(chǎn)品分類
在線留言