目錄:江陰韻翔光電技術(shù)有限公司>>光纖器件>>光纖跳線>> 抗紫外輻照多模光纖跳線:SMA-SMA
參考價(jià) | 面議 |
參考價(jià) | 面議 |
更新時(shí)間:2024-04-18 16:20:25瀏覽次數(shù):1468評(píng)價(jià)
聯(lián)系我們時(shí)請(qǐng)說(shuō)明是化工儀器網(wǎng)上看到的信息,謝謝!
價(jià)格區(qū)間 | 面議 | 應(yīng)用領(lǐng)域 | 電子 |
---|---|---|---|
組件類別 | 光學(xué)元件 |
抗紫外輻照多模光纖跳線:SMA-SMA特性
抵抗因紫外輻射產(chǎn)生傳輸損耗
階躍折射率多模光纖
纖芯尺寸從?105μm到?600 μm
兩端都有SMA905接頭
?3 mm橙色增強(qiáng)外護(hù)套
提供定制光纖
這些跳線和本公司的其他多模SMA-SMA接頭的跳線相類似,但屬于抗紫外輻照光纖。曝光過(guò)度會(huì)在光纖內(nèi)形成色心導(dǎo)致透過(guò)率降低。這些色心在300 nm以下的光照下形成。因此對(duì)于紫外波段,抗紫外光纖由于其出色的透過(guò)率和耐用特性而備受歡迎。這些光纖的典型應(yīng)用為光譜學(xué)和醫(yī)療診斷。
高羥基光纖在紫外光照射下時(shí)將產(chǎn)生嚴(yán)重的透過(guò)率損失。相反,抗紫外光纖在同樣情況下則具有較高的透過(guò)率。在使用時(shí)為了實(shí)現(xiàn)抗紫外光纖的佳性能,初應(yīng)進(jìn)行5分鐘的紫外光曝光進(jìn)行初始退化。此后,該光纖透過(guò)率達(dá)到平衡,就可以正常使用。
這些光纖可承受的大功率受接頭的限制。更多關(guān)于光纖損傷的機(jī)制,請(qǐng)到損傷閾值標(biāo)簽查看。
每條跳線都帶有兩個(gè)罩在終端的保護(hù)帽,防止灰塵落入或其它損傷。額外地,我們還單獨(dú)出售CAPM橡膠光纖保護(hù)帽和SMA端口的CAPMM金屬螺紋光纖保護(hù)帽。
如果您沒(méi)有找到適合您應(yīng)用的現(xiàn)貨光纖,請(qǐng)見(jiàn)我們的定制光纖跳線頁(yè)面,來(lái)滿足您特殊的需求
抗紫外光纖透射率和標(biāo)準(zhǔn)高羥基石英光纖相比(25 W氘燈;光纖長(zhǎng)1 m) |
經(jīng)過(guò)3小時(shí)紫外輻照后,長(zhǎng)1 m的高羥基光纖由過(guò)度曝光造成的衰減和抗紫外光纖在相同條件下的比較(25 W 氘燈,光纖長(zhǎng)1 m)。
In-Stock Multimode Fiber Optic Patch Cable Selection | ||||||
Step Index | Graded Index | Fiber Bundles | ||||
Uncoated | Coated | Mid-IR | Optogenetics | Specialized Applications | ||
SMA | AR-Coated SMA | Fluoride FC and SMA | Lightweight FC/PC | High-Power SMA | FC/PC |
多模光纖教程
在光纖中引導(dǎo)光
光纖屬于光波導(dǎo),光波導(dǎo)是一種更為廣泛的光學(xué)元件,可以利用全內(nèi)反射(TIR)在固體或液體結(jié)構(gòu)中限制并引導(dǎo)光。光纖通常可以在眾多應(yīng)用中使用;常見(jiàn)的例子包括通信、光譜學(xué)、照明和傳感器。
比較常見(jiàn)的玻璃(石英)纖維使用一種稱之為階躍折射率光纖的結(jié)構(gòu),如右圖所示。這種光纖的纖芯由一種折射率比外面包層高的材料構(gòu)成。在光纖中以臨界角入射時(shí),光會(huì)在纖芯/包層界面產(chǎn)生全反射,而不會(huì)折射到周圍的介質(zhì)中。為了達(dá)到TIR的條件,發(fā)射到光纖中入射光的角度必須小于某個(gè)角度,即接收角,θacc。根據(jù)斯涅耳定律可以計(jì)算出這個(gè)角:
其中,ncore為纖芯的折射率,nclad為光纖包層的折射率,n為外部介質(zhì)的折射率,θcrit為臨界角,θacc為光纖的接收半角。數(shù)值孔徑(NA)是一個(gè)無(wú)量綱量,由光纖制造商用來(lái)確定光纖的接收角,表示為:
對(duì)于芯徑(多模)較大的階躍折射率光纖,使用這個(gè)等式可以直接計(jì)算出NA。NA也可以由實(shí)驗(yàn)確定,通過(guò)追蹤遠(yuǎn)場(chǎng)光束分布并測(cè)量光束中心與光強(qiáng)為大光強(qiáng)5%的點(diǎn)之間的角度即可;但是,直接計(jì)算NA得出的值更為準(zhǔn)確。
光纖的全內(nèi)反射
光纖中的模式數(shù)量
光在光纖中傳播的每種可能路徑即為光纖的導(dǎo)模。根據(jù)纖芯/包層區(qū)域的尺寸、折射率和波長(zhǎng),單光纖內(nèi)可支持從一種到數(shù)千種模式。而其中常使用兩種為單模(支持單導(dǎo)模)和多模(支持多種導(dǎo)模)。在多模光纖中,低階模傾向于在空間上將光限制在纖芯內(nèi);而高階模傾向于在空間上將光限制在纖芯/包層界面的附近。
使用一些簡(jiǎn)單的計(jì)算就可以估算出光纖支持的模(單?;蚨嗄?的數(shù)量。歸一化頻率,也就是常說(shuō)的V值,是一個(gè)無(wú)量綱的數(shù),與自由空間頻率成比例,但被歸為光纖的引導(dǎo)屬性。V值表示為:
其中V為歸一化頻率(V值),a為纖芯半徑,λ為自由空間波長(zhǎng)。多模光纖的V值非常大;例如,芯徑為?50 µm、數(shù)值孔徑為0.39的多模光纖,在波長(zhǎng)為1.5 µm時(shí),V值為40.8。
對(duì)于具有較大V值的多模光纖,可以使用下式近似計(jì)算其支持的模式數(shù)量:
上面例子中,芯徑為?50 µm、NA為0.39的多模光纖支持大約832種不同的導(dǎo)模,這些??梢酝瑫r(shí)穿過(guò)光纖。
單模光纖V值必須小于截止頻率2.405,這表示在這個(gè)時(shí)候,光只耦合到光纖的基模中。為了滿足這個(gè)條件,單模光纖的纖芯尺寸和NA要遠(yuǎn)小于同波長(zhǎng)下的多模光纖。例如SMF-28超單模光纖的標(biāo)稱NA為0.14,芯徑為?8.2 µm,在波長(zhǎng)為1550nm時(shí),V值為2.404。
衰減來(lái)源
光纖損耗,也稱之為衰減,是光纖的特性,可以通過(guò)量化來(lái)預(yù)測(cè)光纖裝置內(nèi)的總透射功率損耗。這些損耗來(lái)源一般與波長(zhǎng)相關(guān),因光纖的使用材料或光纖的彎曲等而有所差異。常見(jiàn)衰減來(lái)源的詳情如下:
吸收
標(biāo)準(zhǔn)光纖中的光通過(guò)固體材料引導(dǎo),因此,光在光纖中傳播會(huì)因吸收而產(chǎn)生損耗。標(biāo)準(zhǔn)光纖使用熔融石英制造,經(jīng)優(yōu)化可在波長(zhǎng)1300 nm-1550 nm的范圍內(nèi)傳播。波長(zhǎng)更長(zhǎng)(>2000nm)時(shí),熔融石英內(nèi)的多聲子相互作用造成大量吸收。使用氟化鋯、氟化銦等氟氧物玻璃制造中紅外光纖,主要是因?yàn)樗鼈兲幱谶@些波長(zhǎng)范圍時(shí)損耗較低。氟化鋯、氟化銦的多聲子邊分別為~3.6 µm和~4.6 µm。
光纖內(nèi)的污染物也會(huì)造成吸收損耗。其中一種污染物就是困在玻璃纖維中的水分子,可以吸收波長(zhǎng)在1300 nm和2.94 µm的光。由于通信信號(hào)和某些激光器也是在這個(gè)區(qū)域里工作,光纖中的任意水分子都會(huì)明顯地衰減信號(hào)。
玻璃纖維中離子的濃度通常由制造商控制,以便調(diào)節(jié)光纖的傳播/衰減屬性。例如,石英中本來(lái)就存在羥基(OH-),可以吸收近紅外到紅外光譜的光。因此,羥基濃度較低的光纖更適合在通信波長(zhǎng)下傳播。而羥基濃度較高的光纖在紫外波長(zhǎng)范圍時(shí)有助于傳播,因此,更適合對(duì)熒光或UV-VIS光譜學(xué)等應(yīng)用感興趣的用戶。
散射
對(duì)于大多數(shù)光纖應(yīng)用來(lái)說(shuō),光散射也是損耗的來(lái)源,通常在光遇到介質(zhì)的折射率發(fā)生變化時(shí)產(chǎn)生。這些變化可以是由雜質(zhì)、微?;驓馀菀鸬耐庠谧兓?;也可以是由玻璃密度的波動(dòng)、成分或相位態(tài)引起的內(nèi)在變化。散射與光的波長(zhǎng)呈負(fù)相關(guān)關(guān)系,因此,在光譜中的紫外或藍(lán)光區(qū)域等波長(zhǎng)較短時(shí),散射損耗會(huì)比較大。使用恰當(dāng)?shù)墓饫w清潔、操作和存儲(chǔ)存步驟可以盡可能地減少光纖*的雜質(zhì),避免產(chǎn)生較大的散射損耗。
彎曲損耗
因光纖的外部和內(nèi)部幾何發(fā)生變化而產(chǎn)生的損耗稱之為彎曲損耗。通常包含兩大類:宏彎損耗和微彎損耗。
宏彎損耗造成的衰減
微彎損耗造成的衰減
宏彎損耗一般與光纖的物理彎曲相關(guān);例如,將其卷成圈。如右圖所示,引導(dǎo)的光在空間上分布在光纖的纖芯和包層區(qū)域。以某半徑彎曲光纖時(shí),在彎曲外半徑的光不能在不超過(guò)光速時(shí)維持相同的空間模分布。相反,由于輻射能量會(huì)損耗到周邊環(huán)境中。彎曲半徑較大時(shí),與彎曲相關(guān)的損耗會(huì)比較小;但彎曲半徑小于光纖的推薦彎曲半徑時(shí),彎曲損耗會(huì)非常大。光纖可以在彎曲半徑較小時(shí)進(jìn)行短時(shí)間工作;但如果要長(zhǎng)期儲(chǔ)存,彎曲半徑應(yīng)該大于推薦值。使用恰當(dāng)?shù)膬?chǔ)存條件(溫度和彎曲半徑)可以降低對(duì)光纖造成性損傷的幾率;FSR1光纖纏繞盤設(shè)計(jì)用來(lái)大程度地減少高彎曲損耗。
微彎損耗由光纖的內(nèi)部幾何,尤其是纖芯和包層發(fā)生變化而產(chǎn)生。光纖結(jié)構(gòu)中的這些隨機(jī)變化(即凸起)會(huì)破壞全內(nèi)反射所需的條件,使得傳播的光耦合到非傳播模中,造成泄露(詳情請(qǐng)看右圖)。與由彎曲半徑控制的宏彎損耗不同,微彎損耗是由制造光纖時(shí)在光纖內(nèi)造成的性缺陷而產(chǎn)生。
包層模
雖然多模光纖中的大多數(shù)光通過(guò)纖芯內(nèi)的TIR引導(dǎo),但是由于TIR發(fā)生在包層與涂覆層/保護(hù)層的界面,在纖芯和包層內(nèi)引導(dǎo)光的高階模也可能存在。這樣就產(chǎn)生了我們所熟知的包層模。這樣的例子可在右邊的光束分布測(cè)量中看到,其中體現(xiàn)了包層模包層中的光強(qiáng)比纖芯中要高。這些??梢圆粋鞑?即它們不滿足TIR的條件),也可以在一段很長(zhǎng)的光纖中傳播。由于包層模一般為高階模,在光纖彎曲和出現(xiàn)微彎缺陷時(shí),它們就是損耗的來(lái)源。通過(guò)接頭連接兩個(gè)光纖時(shí)包層模會(huì)消失,因?yàn)樗鼈儾荒茉诠饫w之間輕松耦合。
由于包層模對(duì)光束空間輪廓的影響,有些應(yīng)用(比如發(fā)射到自由空間中)中可能不需要包層模。光纖較長(zhǎng)時(shí),這些模會(huì)自然衰減。對(duì)于長(zhǎng)度小于10 m的光纖,消除包層模的一種辦法就是將光纖纏繞在半徑合適的芯軸上,這樣能保留需要的傳播模式。
在FT200EMT多模光纖與M565F1 LED的光束輪廓中,展現(xiàn)了包層而不是纖芯引導(dǎo)的光。
入纖方式
多模光纖未充滿條件
對(duì)于在NA較大時(shí)接收光的多模光纖來(lái)說(shuō),光耦合到光纖的的條件(光源類型、光束直徑、NA)對(duì)性能有著極大影響。在耦合界面,光的光束直徑和NA小于光纖的芯徑和NA時(shí),就出現(xiàn)了未充滿的入纖條件。這種情況的常見(jiàn)例子就是將激光光源發(fā)射到較大的多模光纖。從下面的圖和光束輪廓測(cè)量可以看出,未充滿時(shí)會(huì)使光在空間上集中到光纖的中心,優(yōu)先充滿低階模,而非高階模。因此,它們對(duì)宏彎損耗不太敏感,也沒(méi)有包層模。這種條件下,所測(cè)的插入損耗也會(huì)小于典型值,光纖纖芯處有著較高的功率密度。
展示未充滿條件的圖(左邊)和使用FT200EMT多模光纖進(jìn)行的光束輪廓測(cè)量(右邊)。
多模光纖過(guò)滿條件
在耦合界面,光束直徑和NA大于光纖的芯徑和NA時(shí)就出現(xiàn)了過(guò)滿的情況。實(shí)現(xiàn)這種條件的一個(gè)方法就是將LED光源的光發(fā)射到較小的多模光纖中。過(guò)滿時(shí)會(huì)將整個(gè)纖芯和部分包層裸露在光中,均勻充滿低階模和高階模(請(qǐng)看下圖),增加耦合到光纖包層模的可能性。高階模比例的增加意味著過(guò)滿光纖對(duì)彎曲損耗會(huì)更為敏感。在這種條件下,所測(cè)的插入損耗會(huì)大于典型值,與未充滿光纖條件相比,會(huì)產(chǎn)生較高的總輸出功率。
展示過(guò)滿條件的圖(左邊)和使用FT200EMT多模光纖進(jìn)行的光束輪廓測(cè)量(右邊)。
多模光纖未充滿或過(guò)滿條件各有優(yōu)劣,這取決于特定應(yīng)用的要求。如需測(cè)量多模光纖的基準(zhǔn)性能,Thorlabs建議使用光束直徑為光纖芯徑70-80%的入纖條件。過(guò)滿條件在短距離時(shí)輸出功率更大;而長(zhǎng)距離(>10 - 20 m)時(shí),對(duì)衰減較為敏感的高階模會(huì)消失。
損傷閥值
激光誘導(dǎo)的光纖損傷
以下教程詳述了無(wú)終端(裸露的)、有終端光纖以及其他基于激光光源的光纖元件的損傷機(jī)制,包括空氣-玻璃界面(自由空間耦合或使用接頭時(shí))的損傷機(jī)制和光纖玻璃內(nèi)的損傷機(jī)制。諸如裸纖、光纖跳線或熔接耦合器等光纖元件可能受到多種潛在的損傷(比如,接頭、光纖端面和裝置本身)。光纖適用的大功率始終受到這些損傷機(jī)制的小值的限制。
雖然可以使用比例關(guān)系和一般規(guī)則估算損傷閾值,但是,光纖的損傷閾值在很大程度上取決于應(yīng)用和特定用戶。用戶可以以此教程為指南,估算大程度降低損傷風(fēng)險(xiǎn)的安全功率水平。如果遵守了所有恰當(dāng)?shù)闹苽浜瓦m用性指導(dǎo),用戶應(yīng)該能夠在的大功率水平以下操作光纖元件;如果有元件并未大功率,用戶應(yīng)該遵守下面描述的"實(shí)際安全水平"該,以安全操作相關(guān)元件??赡芙档凸β蔬m用能力并給光纖元件造成損傷的因素包括,但不限于,光纖耦合時(shí)未對(duì)準(zhǔn)、光纖端面受到污染或光纖本身有瑕疵。
Quick Links |
Damage at the Air / Glass Interface |
Intrinsic Damage Threshold |
Preparation and Handling of Optical Fibers |
空氣-玻璃界面的損傷
空氣/玻璃界面有幾種潛在的損傷機(jī)制。自由空間耦合或使用光學(xué)接頭匹配兩根光纖時(shí),光會(huì)入射到這個(gè)界面。如果光的強(qiáng)度很高,就會(huì)降低功率的適用性,并給光纖造成性損傷。而對(duì)于使用環(huán)氧樹(shù)脂將接頭與光纖固定的終端光纖而言,高強(qiáng)度的光產(chǎn)生的熱量會(huì)使環(huán)氧樹(shù)脂熔化,進(jìn)而在光路中的光纖表面留下殘留物。
損傷的光纖端面
未損傷的光纖端面
裸纖端面的損傷機(jī)制
光纖端面的損傷機(jī)制可以建模為大光學(xué)元件,紫外熔融石英基底的工業(yè)標(biāo)準(zhǔn)損傷閾值適用于基于石英的光纖(參考右表)。但是與大光學(xué)元件不同,與光纖空氣/璃界面相關(guān)的表面積和光束直徑都非常小,耦合單模(SM)光纖時(shí)尤其如此,因此,對(duì)于給定的功率密度,入射到光束直徑較小的光纖的功率需要比較低。
右表列出了兩種光功率密度閾值:一種理論損傷閾值,一種"實(shí)際安全水平"。一般而言,理論損傷閾值代表在光纖端面和耦合條件非常好的情況下,可以入射到光纖端面且沒(méi)有損傷風(fēng)險(xiǎn)的大功率密度估算值。而"實(shí)際安全水平"功率密度代表光纖損傷的低風(fēng)險(xiǎn)。超過(guò)實(shí)際安全水平操作光纖或元件也是有可以的,但用戶必須遵守恰當(dāng)?shù)倪m用性說(shuō)明,并在使用前在低功率下驗(yàn)證性能。
多模(MM)光纖的有效面積由纖芯直徑確定,一般要遠(yuǎn)大于SM光纖的MFD值。如要獲得佳耦合效果,Thorlabs建議光束的光斑大小聚焦到纖芯直徑的70 - 80%。由于多模光纖的有效面積較大,降低了光纖端面的功率密度,因此,較高的光功率(一般上千瓦的數(shù)量級(jí))可以無(wú)損傷地耦合到多模光纖中。
Estimated Optical Power Densities on Air / Glass Interfacea | ||
Type | Theoretical Damage Thresholdb | Practical Safe Levelc |
CW(Average Power) | ~1 MW/cm2 | ~250 kW/cm2 |
10 ns Pulsed(Peak Power) | ~5 GW/cm2 | ~1 GW/cm2 |
所有值針對(duì)無(wú)終端(裸露)的石英光纖,適用于自由空間耦合到潔凈的光纖端面。
這是可以入射到光纖端面且沒(méi)有損傷風(fēng)險(xiǎn)的大功率密度估算值。用戶在高功率下工作前,必須驗(yàn)證系統(tǒng)中光纖元件的性能與可靠性,因其與系統(tǒng)有著緊密的關(guān)系。
這是在大多數(shù)工作條件下,入射到光纖端面且不會(huì)損傷光纖的安全功率密度估算值。
插芯/接頭終端相關(guān)的損傷機(jī)制
有終端接頭的光纖要考慮更多的功率適用條件。光纖一般通過(guò)環(huán)氧樹(shù)脂粘合到陶瓷或不銹鋼插芯中。光通過(guò)接頭耦合到光纖時(shí),沒(méi)有進(jìn)入纖芯并在光纖中傳播的光會(huì)散射到光纖的外層,再進(jìn)入插芯中,而環(huán)氧樹(shù)脂用來(lái)將光纖固定在插芯中。如果光足夠強(qiáng),就可以熔化環(huán)氧樹(shù)脂,使其氣化,并在接頭表面留下殘?jiān)?。這樣,光纖端面就出現(xiàn)了局部吸收點(diǎn),造成耦合效率降低,散射增加,進(jìn)而出現(xiàn)損傷。
與環(huán)氧樹(shù)脂相關(guān)的損傷取決于波長(zhǎng),出于以下幾個(gè)原因。一般而言,短波長(zhǎng)的光比長(zhǎng)波長(zhǎng)的光散射更強(qiáng)。由于短波長(zhǎng)單模光纖的MFD較小,且產(chǎn)生更多的散射光,則耦合時(shí)的偏移也更大。
為了大程度地減小熔化環(huán)氧樹(shù)脂的風(fēng)險(xiǎn),可以在光纖端面附近的光纖與插芯之間構(gòu)建無(wú)環(huán)氧樹(shù)脂的氣隙光纖接頭。我們的高功率多模光纖跳線就使用了這種設(shè)計(jì)特點(diǎn)的接頭。
曲線圖展現(xiàn)了帶終端的單模石英光纖的大概功率適用水平。每條線展示了考慮具體損傷機(jī)制估算的功率水平。大功率適用性受到所有相關(guān)損傷機(jī)制的低功率水平限制(由實(shí)線表示)。
確定具有多種損傷機(jī)制的功率適用性
光纖跳線或組件可能受到多種途徑的損傷(比如,光纖跳線),而光纖適用的大功率始終受到與該光纖組件相關(guān)的低損傷閾值的限制。
例如,右邊曲線圖展現(xiàn)了由于光纖端面損傷和光學(xué)接頭造成的損傷而導(dǎo)致單模光纖跳線功率適用性受到限制的估算值。有終端的光纖在給定波長(zhǎng)下適用的總功率受到在任一給定波長(zhǎng)下,兩種限制之中的較小值限制(由實(shí)線表示)。在488 nm左右工作的單模光纖主要受到光纖端面損傷的限制(藍(lán)色實(shí)線),而在1550nm下工作的光纖受到接頭造成的損傷的限制(紅色實(shí)線)。
對(duì)于多模光纖,有效模場(chǎng)由纖芯直徑確定,一般要遠(yuǎn)大于SM光纖的有效模場(chǎng)。因此,其光纖端面上的功率密度更低,較高的光功率(一般上千瓦的數(shù)量級(jí))可以無(wú)損傷地耦合到光纖中(圖中未顯示)。而插芯/接頭終端的損傷限制保持不變,這樣,多模光纖的大適用功率就會(huì)受到插芯和接頭終端的限制。
請(qǐng)注意,曲線上的值只是在合理的操作和對(duì)準(zhǔn)步驟幾乎不可能造成損傷的情況下粗略估算的功率水平值。值得注意的是,光纖經(jīng)常在超過(guò)上述功率水平的條件下使用。不過(guò),這樣的應(yīng)用一般需要專業(yè)用戶,并在使用之前以較低的功率進(jìn)行測(cè)試,盡量降低損傷風(fēng)險(xiǎn)。但即使如此,如果在較高的功率水平下使用,則這些光纖元件應(yīng)該被看作實(shí)驗(yàn)室消耗品。
光纖內(nèi)的損傷閾值
除了空氣玻璃界面的損傷機(jī)制外,光纖本身的損傷機(jī)制也會(huì)限制光纖使用的功率水平。這些限制會(huì)影響所有的光纖組件,因?yàn)樗鼈兇嬖谟诠饫w本身。光纖內(nèi)的兩種損傷包括彎曲損耗和光暗化損傷。
彎曲損耗
光在纖芯內(nèi)傳播入射到纖芯包層界面的角度大于臨界角會(huì)使其無(wú)法全反射,光在某個(gè)區(qū)域就會(huì)射出光纖,這時(shí)候就會(huì)產(chǎn)生彎曲損耗。射出光纖的光一般功率密度較高,會(huì)燒壞光纖涂覆層和周圍的松套管。
有一種叫做雙包層的特種光纖,允許光纖包層(第二層)也和纖芯一樣用作波導(dǎo),從而降低彎折損傷的風(fēng)險(xiǎn)。通過(guò)使包層/涂覆層界面的臨界角高于纖芯/包層界面的臨界角,射出纖芯的光就會(huì)被限制在包層內(nèi)。這些光會(huì)在幾厘米或者幾米的距離而不是光纖內(nèi)的某個(gè)局部點(diǎn)漏出,從而大限度地降低損傷。Thorlabs生產(chǎn)并銷售0.22 NA雙包層多模光纖,它們能將適用功率提升百萬(wàn)瓦的范圍。
光暗化
光纖內(nèi)的第二種損傷機(jī)制稱為光暗化或負(fù)感現(xiàn)象,一般發(fā)生在紫外或短波長(zhǎng)可見(jiàn)光,尤其是摻鍺纖芯的光纖。在這些波長(zhǎng)下工作的光纖隨著曝光時(shí)間增加,衰減也會(huì)增加。引起光暗化的原因大部分未可知,但可以采取一些列措施來(lái)緩解。例如,研究發(fā)現(xiàn),羥基離子(OH)含量非常低的光纖可以抵抗光暗化,其它摻雜物比如氟,也能減少光暗化。
即使采取了上述措施,所有光纖在用于紫外光或短波長(zhǎng)光時(shí)還是會(huì)有光暗化產(chǎn)生,因此用于這些波長(zhǎng)下的光纖應(yīng)該被看成消耗品。
制備和處理光纖
通用清潔和操作指南
建議將這些通用清潔和操作指南用于所有的光纖產(chǎn)品。而對(duì)于具體的產(chǎn)品,用戶還是應(yīng)該根據(jù)輔助文獻(xiàn)或手冊(cè)中給出的具體指南操作。只有遵守了所有恰當(dāng)?shù)那鍧嵑筒僮鞑襟E,損傷閾值的計(jì)算才會(huì)適用。
安裝或集成光纖(有終端的光纖或裸纖)前應(yīng)該關(guān)掉所有光源,以避免聚焦的光束入射在接頭或光纖的脆弱部分而造成損傷。
光纖適用的功率直接與光纖/接頭端面的質(zhì)量相關(guān)。將光纖連接到光學(xué)系統(tǒng)前,一定要檢查光纖的末端。端面應(yīng)該是干凈的,沒(méi)有污垢和其它可能導(dǎo)致耦合光散射的污染物。另外,如果是裸纖,使用前應(yīng)該剪切,用戶應(yīng)該檢查光纖末端,確保切面質(zhì)量良好。
如果將光纖熔接到光學(xué)系統(tǒng),用戶先應(yīng)該在低功率下驗(yàn)證熔接的質(zhì)量良好,然后在高功率下使用。熔接質(zhì)量差,會(huì)增加光在熔接界面的散射,從而成為光纖損傷的來(lái)源。
對(duì)準(zhǔn)系統(tǒng)和優(yōu)化耦合時(shí),用戶應(yīng)該使用低功率;這樣可以大程度地減少光纖其他部分(非纖芯)的曝光。如果高功率光束聚焦在包層、涂覆層或接頭,有可能產(chǎn)生散射光造成的損傷。
高功率下使用光纖的注意事項(xiàng)
一般而言,光纖和光纖元件應(yīng)該要在安全功率水平限制之內(nèi)工作,但在理想的條件下(佳的光學(xué)對(duì)準(zhǔn)和非常干凈的光纖端面),光纖元件適用的功率可能會(huì)增大。用戶先必須在他們的系統(tǒng)內(nèi)驗(yàn)證光纖的性能和穩(wěn)定性,然后再提高輸入或輸出功率,遵守所有所需的安全和操作指導(dǎo)。以下事項(xiàng)是一些有用的建議,有助于考慮在光纖或組件中增大光學(xué)功率。
要防止光纖損傷光耦合進(jìn)光纖的對(duì)準(zhǔn)步驟也是重要的。在對(duì)準(zhǔn)過(guò)程中,在取得佳耦合前,光很容易就聚焦到光纖某部位而不是纖芯。如果高功率光束聚焦在包層或光纖其它部位時(shí),會(huì)發(fā)生散射引起損傷
使用光纖熔接機(jī)將光纖組件熔接到系統(tǒng)中,可以增大適用的功率,因?yàn)樗梢源蟪潭鹊販p少空氣/光纖界面損傷的可能性。用戶應(yīng)該遵守所有恰當(dāng)?shù)闹笇?dǎo)來(lái)制備,并進(jìn)行高質(zhì)量的光纖熔接。熔接質(zhì)量差可能導(dǎo)致散射,或在熔接界面局部形成高熱區(qū)域,從而損傷光纖。
連接光纖或組件之后,應(yīng)該在低功率下使用光源測(cè)試并對(duì)準(zhǔn)系統(tǒng)。然后將系統(tǒng)功率緩慢增加到所希望的輸出功率,同時(shí)周期性地驗(yàn)證所有組件對(duì)準(zhǔn)良好,耦合效率相對(duì)光學(xué)耦合功率沒(méi)有變化。
由于劇烈彎曲光纖造成的彎曲損耗可能使光從受到應(yīng)力的區(qū)域漏出。在高功率下工作時(shí),大量的光從很小的區(qū)域(受到應(yīng)力的區(qū)域)逃出,從而在局部形成產(chǎn)生高熱量,進(jìn)而損傷光纖。請(qǐng)?jiān)诓僮鬟^(guò)程中不要破壞或突然彎曲光纖,以盡可能地減少?gòu)澢鷵p耗。
用戶應(yīng)該針對(duì)給定的應(yīng)用選擇合適的光纖。例如,大模場(chǎng)光纖可以良好地代替標(biāo)準(zhǔn)的單模光纖在高功率應(yīng)用中使用,因?yàn)榍罢呖梢蕴峁└训墓馐|(zhì)量,更大的MFD,且可以降低空氣/光纖界面的功率密度。
階躍折射率石英單模光纖一般不用于紫外光或高峰值功率脈沖應(yīng)用,因?yàn)檫@些應(yīng)用與高空間功率密度相關(guān)。
?105 µm, 0.22 NA抗紫外輻照多模光纖跳線, SMA905
Fiber | Wavelength | Attenuation | NA | Core | Cladding | Coating | Bend Radius | Jacket | |
Short Term | Long Term | ||||||||
FG10CA | 180 to 1200 nm | 0.22 | 105 ± 2.1 µm | 125 ± 1 µm | 250 ± 10 µm | 15 mm | 30 mm | FT030 |
產(chǎn)品型號(hào) | 公英制通用 |
M111L01 | ?105 µm,0.22 NA,SMA-SMA抗紫外輻照跳線,長(zhǎng)1 m |
M111L02 | ?105 µm,0.22 NA,SMA-SMA抗紫外輻照跳線,長(zhǎng)2 m |
?200 µm, 0.22 NA抗紫外輻照多模光纖跳線, SMA905
Fiber | Wavelength | Attenuation | NA | Core | Cladding | Coating | Bend Radius | Jacket | |
Short Term | Long Term | ||||||||
FG200AEA | 180 to 1200 nm | 0.22 | 200 ± 4 µm | 220 ± 2 µm | 320 ± 12.8 µm | 27 mm | 53 mm | FT030 |
產(chǎn)品型號(hào) | 公英制通用 |
M112L01 | ?200 µm,0.22 NA,SMA-SMA抗紫外輻照跳線,1米 |
M112L02 | ?200 µm,0.22 NA,SMA-SMA抗紫外輻照跳線,2米 |
?400 µm, 0.22 NA抗紫外輻照多模光纖跳線, SMA905
Fiber | Wavelength | Attenuation | NA | Core | Cladding | Coating | Bend Radius | Jacket | |
Short Term | Long Term | ||||||||
FG400AEA | 180 to 1200 nm | 0.22 | 400 ± 8 µm | 440 ± 4 µm | 550 ± 15 µm | 53 mm | 106 mm | FT030 |
產(chǎn)品型號(hào) | 公英制通用 |
M113L01 | ?400 µm,0.22 NA,SMA-SMA抗紫外輻照跳線,1米 |
M113L02 | ?400 µm,0.22 NA,SMA-SMA抗紫外輻照跳線,2米 |
?600 µm, 0.22 NA抗紫外輻照多模光纖跳線, SMA905
Fiber | Wavelength | Attenuation | NA | Core | Cladding | Coating | Bend Radius | Jacket | |
Short Term | Long Term | ||||||||
FG600AEA | 180 to 1200 nm | 0.22 | 600 ± 12 µm | 660 ± 6 µm | 750 ± 20 µm | 80 mm | 159 mm | FT030 |
產(chǎn)品型號(hào) | 公英制通用 |
M114L01 | ?600 µm,0.22 NA,SMA-SMA抗紫外輻照跳線,長(zhǎng)1 m |
M114L02 | ?600 µm,0.22 NA,SMA-SMA抗紫外輻照跳線,長(zhǎng)2 m |
損傷的光纖端面
(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)