您好, 歡迎來到化工儀器網(wǎng)! 登錄| 免費注冊| 產(chǎn)品展廳| 收藏商鋪|
當(dāng)前位置:南京灼華電氣有限公司>>技術(shù)文章>>性能優(yōu)化HYDAC傳感器EDS348-5-016-000
傳感器、大數(shù)據(jù)、機器學(xué)習(xí)、人工智能和機器人是怎樣擰在一起了呢?在人工智能時代硬件和軟件是共生演化的,彼此影響的呢?
“物聯(lián)網(wǎng)"、“大數(shù)據(jù)"和“機器人"等,其實這些趨勢是相互聯(lián)系在一起的,擰成一個大趨勢, 在這個鏈條里,每一環(huán)都會對下一環(huán)產(chǎn)生影響,如此產(chǎn)生積極的循環(huán)。 各種連接的設(shè)備里的傳感器會產(chǎn)生大量數(shù)據(jù),海量數(shù)據(jù)使得機器學(xué)習(xí)成為可能,機器學(xué)習(xí)的結(jié)果就是AI,而AI又指導(dǎo)機器人去更精確地執(zhí)行任務(wù),機器人的行動又會觸發(fā)傳感器。這整個就是一個完整的循環(huán)。
1.傳感器產(chǎn)生數(shù)據(jù)
到2014年,連接到互聯(lián)網(wǎng)的設(shè)備超過了世界人口的總和。 Cisco預(yù)測,到2020年,將有500億個相互連接的設(shè)備。而這些設(shè)備中大多都會安傳感器,可能用Electric Imp內(nèi)嵌傳感器,或者用Estimote外接一個傳感器。
設(shè)備中的傳感器會產(chǎn)生的海量數(shù)據(jù)。
2.數(shù)據(jù)支撐機器學(xué)習(xí)
在2020年,預(yù)計有35ZB的數(shù)據(jù)產(chǎn)生,也就是2009年數(shù)據(jù)量的44倍。到時候,不管是結(jié)構(gòu)化的、或更可能是沒有結(jié)構(gòu)化的數(shù)據(jù)都可以通過機器來處理,從而獲得大量洞見。
3.機器學(xué)習(xí)改善AI
機器學(xué)習(xí)依靠數(shù)據(jù)處理和模式識別,從而讓計算機不需要編程就能去學(xué)習(xí)?,F(xiàn)在的海量數(shù)據(jù)和計算能力都在驅(qū)使機器學(xué)習(xí)的突破。
機器學(xué)習(xí)的十足威力,看看就知道了。
就是利用機器學(xué)習(xí),把法國每一個企業(yè)的位置、每一個住房、每一條街都繪制在地圖上了。整個過程只需1個小時。
4.人工智能指導(dǎo)機器人行動
隨著計算機已經(jīng)在象棋和路標(biāo)方面做得比人類好了,我們就有理由對未來有更多期待。隨著更多的傳感器采集到的數(shù)據(jù)越來越多,這能優(yōu)化更多的機器學(xué)習(xí)算法,從而我們可以合乎邏輯地推斷,與機器人結(jié)合的計算機執(zhí)行任務(wù)的能力會呈指數(shù)級增長。
5.機器人采取行動
不僅數(shù)以百計的公司在制作可以完成各種工作的機器人,機器人本身也會變得越來越智能, 而且借助AI的進步,還能完成很多我們夢寐以求的任務(wù)。
6.行動觸發(fā)傳感器
機器采取行動觸發(fā)傳感器來收集數(shù)據(jù),從而整個循環(huán)就完整了。
這就是整個人工智能生態(tài)的技術(shù)鏈。
人工智能技術(shù)優(yōu)化傳感器系統(tǒng)
人工智能技術(shù)能夠?qū)鞲衅飨到y(tǒng)有所幫助,它們是:基于知識的系統(tǒng)、模糊邏輯、自動知識收集、神經(jīng)網(wǎng)絡(luò)、遺傳算法、基于案例推理和環(huán)境智能。這些技術(shù)在傳感器系統(tǒng)中的應(yīng)用越來越廣泛,不僅因為它們確實有效,還因為今天的計算機應(yīng)用越來越普及。
這些人工智能技術(shù)具有低的計算復(fù)雜度,可以應(yīng)用于小型傳感器系統(tǒng)、單一傳感器或者采用低容量微型控制器陣列的系統(tǒng)。正確應(yīng)用人工智能技術(shù)將會創(chuàng)造更多富有競爭力的傳感器系統(tǒng)和應(yīng)用。
人工智能領(lǐng)域的其他技術(shù)進步也將會給傳感器系統(tǒng)帶來沖擊,包括數(shù)據(jù)挖掘技術(shù)、多主體系統(tǒng)和分布式自組織系統(tǒng)。環(huán)境傳感技術(shù)能夠?qū)⒑芏辔⑿碗娮犹幚砥骱蛡鞲衅骷傻饺粘N锲分校蛊渚哂兄悄?。它們可以?chuàng)造智能環(huán)境,與其他智能設(shè)備通訊,并與人類實現(xiàn)交互。給出的建議能夠幫助用戶更加直觀地完成任務(wù),但是這種集成技術(shù)的后果將會很難預(yù)測。使用環(huán)境智能和多種人工智能技術(shù)的組合能夠?qū)⑦@種技術(shù)發(fā)揮到致。
創(chuàng)建更智能的傳感器系統(tǒng)
可以采用人工智能對傳感器系統(tǒng)進行優(yōu)化。人工智能作為計算機科學(xué)的一個分支出現(xiàn)于20世紀(jì)50年代,它繁衍出了很多功能強大的工具,在傳感器系統(tǒng)中具有巨大作用,能夠自動解決那些原本需要人類智能才能夠解決的問題。
雖然人工智能進入工業(yè)領(lǐng)域的進程較為緩慢,但是它必將帶來靈活性、可重新配置能力和可靠性方面的進步。全新的系統(tǒng)設(shè)備在越來越多的任務(wù)中表現(xiàn)出超過人類的性能。隨著它們與人類越來越緊密,我們將人類大腦與計算機能力結(jié)合起來,實現(xiàn)商討、分析、推論、通訊和發(fā)明。
人工智能結(jié)合了多種先進技術(shù),賦予了機器學(xué)習(xí)、采納、決策的能力,給予他們?nèi)碌墓δ?。這一成就依賴于神經(jīng)網(wǎng)絡(luò)、專家系統(tǒng)、自組織系統(tǒng)、模糊邏輯和遺傳算法等技術(shù),人工智能技術(shù)將其應(yīng)用領(lǐng)域擴展到了很多其他領(lǐng)域,其中一些領(lǐng)域需要對傳感器信息進行解析和處理,例如裝配、生物傳感器、建筑建模、計算機視覺、切割工具診斷、環(huán)境工程、力值傳感、健康監(jiān)控、人機交互、網(wǎng)絡(luò)應(yīng)用、激光銑削、維護和檢查、動力輔助、機器人、傳感器網(wǎng)絡(luò)和遙控作業(yè)等等。
這些人工智能方面的發(fā)展被引入到了更加復(fù)雜的傳感器系統(tǒng)中。點擊鼠標(biāo)、輕敲開關(guān)或者大腦的思考都會將任何傳感器數(shù)據(jù)轉(zhuǎn)化為信息并發(fā)送給你。近期此項研究已經(jīng)有所斬獲, 在如下七個領(lǐng)域中人工智能可以幫助傳感器系統(tǒng)。
1、基于知識的系統(tǒng)
基于知識的系統(tǒng)也被稱為專家系統(tǒng),它是一種計算機應(yīng)用程序,整合了大量與某一領(lǐng)域相關(guān)聯(lián)的問題解決方案。
專家系統(tǒng)通常有兩個組成部分,知識數(shù)據(jù)庫和推斷機制。知識數(shù)據(jù)庫以“如果-那么"的形式表述了這個領(lǐng)域內(nèi)的各種知識,加上各種事實陳述、框架、對象和案例。推斷機制對存儲的知識進行操作,產(chǎn)生針對問題的解決方案。知識操作方法包含繼承和約束條件(在基于框架和面向?qū)ο蟮膶<蚁到y(tǒng))、檢索并采納案例(案例系統(tǒng))和應(yīng)用推斷規(guī)則(規(guī)則系統(tǒng)),具體取決于某些控制程序(前向或反向鏈接)和搜索策略(深度優(yōu)先或者廣度優(yōu)先)。
基于規(guī)則的系統(tǒng)將系統(tǒng)的知識描述為“如果-那么-否則"的形式。特殊的知識可以用于據(jù)側(cè)。這些系統(tǒng)善于以人類稔熟的形式呈現(xiàn)知識并作出決策。
由于使用嚴(yán)格的規(guī)則限制,它們并不擅長于應(yīng)對不確定的任務(wù)和不精確的場景。典型的規(guī)則系統(tǒng)具有四個組成部分:規(guī)則列表或者規(guī)則數(shù)據(jù)庫(知識數(shù)據(jù)庫的一種特殊形式)、推斷引擎或者解析器(根據(jù)輸入和規(guī)則數(shù)據(jù)庫推斷信息或者采取行動)、臨時工作存儲器、用戶接口或者其他與外部世界的互通方法,將輸入和輸出信號接收進來和發(fā)送出去。
基于案例推理方法是基于過往問題的經(jīng)驗解決現(xiàn)有問題。這種解決方案被存儲于數(shù)據(jù)庫之中,作為人類專家的經(jīng)驗總結(jié)。當(dāng)系統(tǒng)發(fā)生了的問題,它會將問題與過往問題對比,找到一個與現(xiàn)有問題較為相近的案例。然后按照過往的解決方案解決問題,并按照成功和失敗與否更新數(shù)據(jù)庫?;诎咐评硐到y(tǒng)通常被認(rèn)為是規(guī)則系統(tǒng)的一種擴展,他們善于以人類稔熟的形式呈現(xiàn)知識,具有從過往案例學(xué)習(xí)并產(chǎn)生新案例的能力。
2、基于案例推理
基于案例推理針對計算機應(yīng)用形成了四個步驟:
1、檢索:給出目標(biāo)問題,從內(nèi)存檢索相關(guān)案例以解決這個問題。案例包括問題、解決方案以及關(guān)于這個解決方案是如何得到的注釋。
2、重用:將解決方案從過往案例映射到目標(biāo)問題上。這一過程包括對新場景適應(yīng)性變更。
3、修改:在將解決方案從過往案例映射到目標(biāo)場景之后,測試新的解決方案在真實世界(或者仿真場景)中是否奏效,如果必要,進行修改。
4、保留:如果解決方案成功地解決了目標(biāo)問題,那么將解決方案作為全新案例存儲于內(nèi)存中。
這一方法的爭論點在于它采納了一些未經(jīng)證實的證據(jù)作為主要作業(yè)準(zhǔn)則。沒有統(tǒng)計相關(guān)數(shù)據(jù)作為支撐,很難確保結(jié)論的準(zhǔn)確性。所有根據(jù)少量數(shù)據(jù)做出的推理都被認(rèn)為是未經(jīng)證實的證據(jù)。
基于案例推理這一概念的宗旨就是將過往問題的解決方案應(yīng)用在當(dāng)前問題上。這種解決方案被存儲于數(shù)據(jù)庫之中,作為人類專家的經(jīng)驗總結(jié)。當(dāng)系統(tǒng)發(fā)生了的問題,它會將問題與過往問題對比,找到一個與現(xiàn)有問題較為相近的案例。然后按照過往的解決方案解決問題,并按照成功和失敗與否更新數(shù)據(jù)庫。
基于案例推理系統(tǒng)通常被認(rèn)為是規(guī)則系統(tǒng)的擴展。和規(guī)則系統(tǒng)類似,基于案例推理系統(tǒng)善于以人類稔熟的方式呈現(xiàn)知識,不但如此,基于案例推理系統(tǒng)還具有從過往案例學(xué)習(xí)并產(chǎn)生新案例的能力。圖1所示為基于案例推理系統(tǒng)。
圖示1是基于案例推理系統(tǒng),和基于規(guī)則的系統(tǒng)一樣,基于案例推理系統(tǒng)的擅長之處在于以人類稔熟的方式呈現(xiàn)信息;同時,基于案例推理系統(tǒng)也具有從過去案例學(xué)習(xí)進而創(chuàng)建新增案例的能力。
很多專家系統(tǒng)再開發(fā)時都采用了一種被稱為“殼"的程序,它是一種配備了完整的推斷和知識存儲設(shè)備但是并不具備相關(guān)領(lǐng)域內(nèi)知識的專家系統(tǒng)。一些復(fù)雜的專家系統(tǒng)的構(gòu)建依賴于“開發(fā)環(huán)境",后者比殼的應(yīng)用更加靈活,為用戶提供了構(gòu)建自定義判斷和知識呈現(xiàn)方法的機會。
專家系統(tǒng)恐怕是這些技術(shù)中較為成熟的一種,有很多商業(yè)殼系統(tǒng)和開發(fā)工具可供使用。一旦某一領(lǐng)域內(nèi)的知識被導(dǎo)入了專家系統(tǒng),構(gòu)建整個系統(tǒng)的過程就相對簡單了。由于專家系統(tǒng)便于使用,所以應(yīng)用廣泛。在傳感器系統(tǒng)中,有很多應(yīng)用領(lǐng)域,包括選擇傳感器輸入、解析信號、狀態(tài)監(jiān)控、故障診斷、機器和過程控制、機器設(shè)計、過程規(guī)劃、生產(chǎn)規(guī)劃和系統(tǒng)配置。專家系統(tǒng)的應(yīng)用還包括裝配、自動編程、復(fù)雜智能車輛的控制、檢查規(guī)劃、預(yù)測危險、選擇工具和加工策略、工序規(guī)劃和工廠擴建的控制。
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業(yè)自行提供,信息內(nèi)容的真實性、準(zhǔn)確性和合法性由相關(guān)企業(yè)負(fù)責(zé),化工儀器網(wǎng)對此不承擔(dān)任何保證責(zé)任。
溫馨提示:為規(guī)避購買風(fēng)險,建議您在購買產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量。