您好, 歡迎來到化工儀器網(wǎng)

| 注冊| 產(chǎn)品展廳| 收藏該商鋪

19801430409

business

首頁   >>   供求商機

被子植物353個單拷貝核基因靶向捕獲測序
  • 被子植物353個單拷貝核基因靶向捕獲測序
舉報

貨物所在地:河北保定市

更新時間:2024-05-27 17:07:20

瀏覽次數(shù):156

在線詢價收藏產(chǎn)品

( 聯(lián)系我們,請說明是在 化工儀器網(wǎng) 上看到的信息,謝謝?。?/p>

被子植物353個單拷貝核基因靶向捕獲測序:基于被子植物353個單拷貝核基因探針集的靶向捕獲測序,是一種采用靶向捕獲探針對特定的基因組區(qū)域進行選擇性地富集,再進行測序的技術。適用于所有被子植物家族,該技術的優(yōu)勢在于去除冗余數(shù)據(jù)的干擾,同時降低測序成本及基因組組裝的復雜性,進而提高NGS數(shù)據(jù)的利用率,促進項目規(guī)模的擴大。因此,靶向捕獲測序技術是系統(tǒng)發(fā)育學和群體遺傳學研究最有前景的技術之一。

被子植物353個單拷貝核基因靶向捕獲測序


被子植物353個單拷貝核基因靶向捕獲測序,將探針雜交捕獲技術和NGS技術相結合。該技術為研究被子植物的系統(tǒng)進化和分類、植物適應性機制、種群進化歷史、種群的結構、基因滲透和漂移提供高效的整體解決方案。靶向捕獲測序技術服務,使用biotin的探針,捕獲被子植物353個單拷貝核基因。您可以提供新鮮植物樣本,臘葉標本或者古老的博物館標本,我們負責DNA提取、文庫構建、靶向捕獲、測序和數(shù)據(jù)分析。我們可為您提供被子植物353個單拷貝核基因靶向捕獲測序服務,歡迎咨詢!


技術流程:

image.png

生信分析流程:

image.png


技術優(yōu)勢:

image.png

實驗數(shù)據(jù):

基因覆蓋率-小.jpg

Fig 1. Heatmap of Gene Recovery Efficiency. Each row is one sample, and each column is one gene. Colors indicate the percentage of the target length (calculated by the mean length of all k-medoid transcripts for each gene) recovered.


Angio353_Fig4 (1).jpg

Fig 2. Total Length of Sequence Recovery for Both Coding and Non-coding Regions Across 353 Loci for 42 Angiosperm Species. Reads were mapped back to either coding sequence (yellow) or coding sequence plus flanking non-coding (i.e. intron) sequence (purple)… The total length of coding sequence targeted was 260,802 bp. The median recovery of coding sequence was 137,046 bp and the median amount of non-coding sequence recovered was 216,816 bp (with at least 8x depth of coverage).


參考文獻:

Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, Leebens-Mack JH, Leitch IJ, Maurin O, Soltis DE, Soltis PS, Wong GK, Baker WJ, Wickett NJ. A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Syst Biol. 2019. 68(4):594-606. doi: 10.1093/sysbio/syy086.


使用被子植物353個單拷貝核基因捕獲探針進行靶向捕獲測序,發(fā)表的部分文獻:

  • Antonelli, A., Clarkson, J.J., Kainulainen, K., Maurin, O., Brewer, G.E., Davis, A.P., … Baker, W.J. (2021). Settling a family feud: a high-level phylogenomic framework for the Gentianales based on 353 nuclear genes and partial plastomes. American Journal of Botany 108, 1143–1165.

  • Baker, W.J., Bailey, P., Barber, V., Barker, A., Bellot, S., Bishop, D., … Forest, F. (2021). A Comprehensive Phylogenomic Platform for Exploring the Angiosperm Tree of Life. Systematic Biology.

  • Brewer, G.E., Clarkson, J.J., Maurin, O., Zuntini, A.R., Barber, V., Bellot, S., … Baker, W.J. (2019). Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms. Front. Plant Sci. 0.

  • Buerki, S., Callmander, M.W., Acevedo-Rodriguez, P., Lowry, P.P., Munzinger, J., Bailey, P., … Forest, F. (2021). An updated infra-familial classification of Sapindaceae based on targeted enrichment data. American Journal of Botany 108, 1234–1251.

  • Clarkson, J.J., Zuntini, A.R., Maurin, O., Downie, S.R., Plunkett, G.M., Nicolas, A.N., … Baker, W.J., (2021). A higher-level nuclear phylogenomic study of the carrot family (Apiaceae). American Journal of Botany 108, 1252–1269.

  • Gaynor, M.L., Fu, C.-N., Gao, L.-M., Lu, L.-M., Soltis, D.E., Soltis, P.S. (2020). Biogeography and ecological niche evolution in Diapensiaceae inferred from phylogenetic analysis. Journal of Systematics and Evolution 58, 646–662.

  • Hendriks, K.P., Mandáková, T., Hay, N.M., Ly, E., Huysduynen, A.H. van, Tamrakar, R., … Bailey, C.D. (2021). The best of both worlds: Combining lineage-specific and universal bait sets in target-enrichment hybridization reactions. Applications in Plant Sciences 9.

  • Johnson, M., Pokorny, L., Dodsworth, S., Botigue, L.R., Cowan, R.S., Devault, A., … Wickett, N. (2019). A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-medoids Clustering. Systematic Biology 68(4): 594-606.

  • Larridon, I., Villaverde, T., Zuntini, A.R., Pokorny, L., Brewer, G.E., Epitawalage, N., … Baker, W.J. (2020). Tackling Rapid Radiations With Targeted Sequencing. Frontiers in Plant Science 10: 1.

  • Larridon, I., Zuntini, A.R., Barrett, R.L., Wilson, K.L., Bruhl, J.J., Goetghebeur, P., … Roalson, E.H. (2021). Resolving generic limits in Cyperaceae tribe Abildgaardieae using targeted sequencing. Botanical Journal of the Linnean Society 196, 163–187.

  • Larridon, I., Zuntini, A.R., Léveillé-Bourret, é., Barrett, R.L., Starr, J.R., Muasya, A.M., … Baker, W.J. (2021). A new classification of Cyperaceae (Poales) supported by phylogenomic data. Journal of Systematics and Evolution 59, 852–895.

  • Lee, A.K., Gilman, I.S., Srivastav, M., Lerner, A.D., Donoghue, M.J., Clement, W.L. (2021). Reconstructing Dipsacales phylogeny using Angiosperms353: issues and insights. American Journal of Botany 108, 1122–1142.

  • Maurin, O., Anest, A., Bellot, S., Biffin, E., Brewer, G., Charles-Dominique, T., … Lucas, E. (2021). A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. American Journal of Botany 108(7): 1087–1111.

  • Murphy, B., Forest, F., Barraclough, T., Rosindell, J., Bellot, S., Cowan, R., … Cheek, M. (2020). A phylogenomic analysis of Nepenthes (Nepenthaceae). Molecular Phylogenetics and Evolution 144, 106668.

  • Ogutcen, E., Christe, C., Nishii, K., Salamin, N., M?ller, M., Perret, M. (2021). Phylogenomics of Gesneriaceae using targeted capture of nuclear genes. Molecular Phylogenetics and Evolution 157, 107068.

  • Ottenlips, M.V., Mansfield, D.H., Buerki, S., Feist, M.A.E., Downie, S.R., Dodsworth, … Smith, J.F. (2021). Resolving species boundaries in a recent radiation with the Angiosperms353 probe set: the Lomatium packardiae/L. anomalum clade of the L. triternatum (Apiaceae) complex. American Journal of Botany 108, 1217–1233.

  • Pérez-Escobar, O.A., Dodsworth, S., Bogarín, D., Bellot, S., Balbuena, J.A., Schley, R.J., … Baker, W.J. (2021). Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. American Journal of Botany 108, 1166–1180.

  • Pillon, Y., Hopkins, H.C.F., Maurin, O., Epitawalage, N., Bradford, J., Rogers, Z.S., … Forest, F. (2021). Phylogenomics and biogeography of Cunoniaceae (Oxalidales) with complete generic sampling and taxonomic realignments. American Journal of Botany 108, 1181–1200.

  • Shah, T., Schneider, J.V., Zizka, G., Maurin, O., Baker, W., Forest, F., … Larridon, I., (2021). Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. American Journal of Botany 108, 1201–1216.

  • Shee, Z. Q., D. G. Frodin, R. Cámara-Leret, L. Pokorny. (2020). Reconstructing the Complex Evolutionary History of the Papuasian Schefflera Radiation Through Herbariomics. Frontiers in Plant Science 11: 258.

  • Siniscalchi, C.M., Hidalgo, O., Palazzesi, L., Pellicer, J., Pokorny, L., Maurin, O., … Mandel, J.R. (2021). Lineage-specific vs. universal: A comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family. Applications in Plant Sciences 9.

  • Starr, J.R., Jiménez-Mejías, P., Zuntini, A.R., Léveillé-Bourret, é., Semmouri, I., Muasya, M., … Larridon, I. (2021). Targeted sequencing supports morphology and embryo features in resolving the classification of Cyperaceae tribe Fuireneae s.l. Journal of Systematics and Evolution 59, 809–832.

  • Thomas, A.E., Igea, J., Meudt, H.M., Albach, D.C., Lee, W.G., Tanentzap, A.J. (2021). Using target sequence capture to improve the phylogenetic resolution of a rapid radiation in New Zealand Veronica. American Journal of Botany 108, 1289–1306.

  • Thomas, S.K., Liu, X., Du, Z.-Y., Dong, Y., Cummings, A., Pokorny, L., … Leebens-Mack, J.H. (2021). Comprehending Cornales: phylogenetic reconstruction of the order using the Angiosperms353 probe set. American Journal of Botany 108, 1112–1121.

  • Ufimov, R., Zeisek, V., Pí?ová, S., Baker, W.J., Fér, T., Loo, M., … Schmickl, R. (2021). Relative performance of customized and universal probe sets in target enrichment: A case study in subtribe Malinae. Applications in Plant Sciences 9, e11442.

  • Van Andel, T., Veltman, M. A., Bertin, A., Maat, H., Polime, T., Hille Ris Lambers, D., … Manzanilla, V.. (2019). Hidden Rice Diversity in the Guianas. Frontiers in Plant Science 10: 1161.

  • Wenzell, K.E., McDonnell, A.J., Wickett, N.J., Fant, J.B., Skogen, K.A. (2021). Incomplete reproductive isolation and low genetic differentiation despite floral divergence across varying geographic scales in Castilleja. American Journal of Botany 108, 1270–1288.

  • Zuntini, A.R., Frankel, L.P., Pokorny, L., Forest, F., Baker, W.J. (2021). A comprehensive phylogenomic study of the monocot order Commelinales, with a new classification of Commelinaceae. American Journal of Botany 108, 1066–1086.

會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

您的留言已提交成功!我們將在第一時間回復您~
在線留言

會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用: