燃料電池作為一種利用氫氣或醇類的發(fā)電設(shè)備,通過電化學(xué)反應(yīng)將氫氣或醇類的化學(xué)能直接轉(zhuǎn)化為電能,不受卡諾循環(huán)(Carnot cycle)的限制,具有高效和清潔的特點,在新能源領(lǐng)域受到廣泛的關(guān)注,并在航空航天、運載交通和便攜移動設(shè)備中具有良好的應(yīng)用前景。
燃料電池按照電解質(zhì)和工作溫度的不同,可以分為:質(zhì)子交換膜燃料電池(Proton exchange membrane fuel cells,PEMFC)、固體氧化物燃料電池(Solid oxide fuel cell,SOFC)、熔融碳酸鹽燃料電池(Molten carbonate fuel cell,MCFC)、磷酸鹽燃料電池(Phosphoric fuel cell,PAFC)和堿性燃料電池(Alkaline fuel cell,AFC)等。其中,PEMFC被看作是新能源車輛領(lǐng)域中具有發(fā)展前景的動力源。
圖1 燃料電池的分類及技術(shù)狀態(tài)
PEMFC的發(fā)展可以追溯到20世紀60年代,美國國家航空航天局(NASA)委托美國通用電器公司(GE)研制載人航天器的電池系統(tǒng)。但受當時技術(shù)的限制,PEMFC采用的聚苯乙烯磺酸膜在服役時易于降解,導(dǎo)致電池壽命很短。GE隨后將電池的電解質(zhì)膜更換為杜邦公司(Du Pont)的全氟磺酸膜(Nafion)部分解決了上述問題,但是阿波羅(Appollo)登月飛船卻搭載了另一類燃料電池——AFC。受此挫折之后,PEMFC技術(shù)的研發(fā)一直處于停滯狀態(tài)。
直到 1983年,加拿大巴拉德動力公司(Ballard Power System)在加拿大國防部資助下重啟 PEMFC的研發(fā)。隨著材料科學(xué)和催化技術(shù)的發(fā)展,PEMFC技術(shù)取得了重大突破。鉑/碳催化劑取代純鉑黑,并且實現(xiàn)了電極的立體化,即陰極、陽極和膜三合一組成膜電極組件(Membrane electrode assembly,MEA),降低了電極電阻,增加了鉑的利用率。20世紀90年代以后,電化學(xué)催化還原法和濺射法等薄膜電極的制備技術(shù)進一步發(fā)展,使膜電極鉑載量大幅降低。性能的提升和成本的下降也促使 PEMFC逐漸轉(zhuǎn)為民用
圖2 燃料電池汽車歷史
質(zhì)子交換膜燃料電池(PEMFC)由陽極、質(zhì)子交換膜、陰極組成,利用水電解的逆反應(yīng),連續(xù)地將氫氣和氧氣通過化學(xué)反應(yīng)直接轉(zhuǎn)化為電力,并且可以通過多個串聯(lián)來滿足電壓需求。
PEMFC發(fā)電的基本原理:氫氣進入燃料電池的陽極流道,氫分子在陽極催化劑的作用下達到 60℃左右后開始被離解成為氫質(zhì)子和電子,氫質(zhì)子穿過燃料電池的質(zhì)子交換膜向陰極方向運動,因電子無法穿過質(zhì)子交換膜,所以通過另一種電導(dǎo)體流向陰極;在燃料電池的陰極流道中通入氧氣(空氣),氧氣在陰極催化劑作用下離解成氧原子,與通過外部電導(dǎo)體流向陰極的電子和穿過質(zhì)子交換膜的氫質(zhì)子結(jié)合生成純凈水,完成電化學(xué)反應(yīng)。
圖3 質(zhì)子交換膜燃料電池(PEMFC)工作原理
膜電極(Membrane Electrode Assembly, MEA)是燃料電池發(fā)電的關(guān)鍵核心部件。膜電極由質(zhì)子交換膜(PEM)、膜兩側(cè)的催化層(CL)和氣體擴散層(GDL)組成,燃料電池的電化學(xué)反應(yīng)發(fā)生在膜電極中。
質(zhì)子交換膜的功能是傳遞質(zhì)子,同時隔離燃料與氧化劑。目前常見的膜材料是全氟磺酸質(zhì)子交換膜,代表廠家Gore公司的Gore Select增強型質(zhì)子交換膜、杜邦公司的Nafion系列。
催化劑主要控制電極上氫和氧的反應(yīng)過程,是影響電池活化極化的主要因素。目前氫燃料電池的催化劑主要為三個大類:鉑(Pt)催化劑、低鉑催化劑和非鉑催化劑。Pt作為催化劑可以吸附氫氣分子促成離解,是目前需要商用的;但Pt稀缺性強,我國儲量也不豐富,減少鉑基催化劑用量是降低燃料電池系統(tǒng)商用成本的重要途徑。
氣體擴散層的主要作用是支撐催化層,傳遞反應(yīng)氣體與產(chǎn)物,并傳導(dǎo)電流?;耐ǔ槎嗫讓?dǎo)電的材質(zhì),如炭紙、炭布,且用PTFE等進行憎水處理構(gòu)成氣體通道。目前市場上商業(yè)化的氣體擴散層基材供應(yīng)商主要包括日本Toray、德國SGL與Freudenberg、加拿大Ballard等。
三位一體檢測系統(tǒng)是 Apreo 2 掃描電鏡鏡筒內(nèi)檢測系統(tǒng)。它由三個探測器組成:兩個極靴內(nèi)探測器(T1、T2)和一個 鏡筒內(nèi)探測器(T3)。這一系統(tǒng)可提供燃料電池膜電極MEA成分、形貌和表面特征等不同層次的詳細信息。
圖4 賽默飛電鏡及三位一體檢測系統(tǒng)示意圖
圖5 膜電極MEA示意圖對其對應(yīng)的顯微結(jié)構(gòu)
MEA的結(jié)構(gòu)設(shè)計和制備工藝技術(shù)是燃料電池研究的關(guān)鍵技術(shù),它決定了燃料電池的工作性能。
另外,質(zhì)子交換膜PEM是燃料電池的核心部件。它的性能高度依賴于燃料電池電堆的堆疊和系統(tǒng)設(shè)計,尤其是PEM所經(jīng)受的工作條件。這項看似微小的技術(shù)卻是關(guān)鍵所在。燃料電池在實際應(yīng)用環(huán)境中的耐久性是另一個關(guān)鍵性能因素。根據(jù)美國能源部的規(guī)定,在實際環(huán)境中行駛的條件下,燃料電池使用壽命應(yīng)達到約5,000小時。為了達到這些目標,PEM設(shè)計必須考慮兩種類型的耐久性,機械耐久性和化學(xué)耐久性。
機械耐久性:工作過程中的相對濕度循環(huán)會導(dǎo)致PEM的機械性能衰減。相對濕度的升高和降低會引起PEM膨脹和收縮,從而導(dǎo)致MEA中出現(xiàn)裂紋和孔洞。久而久之,這會造成氣體滲透增加以及效率損失,并導(dǎo)致燃料電池電堆發(fā)生災(zāi)難性故障。通常,未經(jīng)增強的PEM會通過增加厚度來提升耐久性,導(dǎo)致電導(dǎo)率降低,因此功率密度也更低。業(yè)內(nèi)已廣泛認可,化學(xué)穩(wěn)定性優(yōu)異的ePTFE增強型質(zhì)子交換膜(全氟磺酸樹脂/聚四氟乙烯/全氟磺酸樹脂,三明治結(jié)構(gòu))可顯著減少這種面內(nèi)膨脹,提高RH循環(huán)耐久性,并延長電池電堆的使用壽命。
圖6 膜電極的橫截面顯微結(jié)構(gòu)圖,ePTFE增強型質(zhì)子交換膜(全氟磺酸樹脂/聚四氟乙烯/全氟磺酸樹脂)
化學(xué)耐久性: 燃料電池需要在惡劣的化學(xué)環(huán)境中工作。燃料電池工作過程中產(chǎn)生的有害自由基會與離子聚合物 (全氟磺酸樹脂是一種離子聚合物)發(fā)生反應(yīng),造成離子聚合物性能下降,這種性能衰減會造成燃料電池性能的持續(xù)下降,增加氣體滲透,并導(dǎo)致PEM和燃料電池失效。PEM的化學(xué)耐久性不僅受PEM的自身屬性影響,還受PEM的工作環(huán)境影響。減少PEM厚度有助于改善高溫下的性能。因此,對不同結(jié)構(gòu)層厚度的準確測量,就非常重要。
催化層中的催化組分為催化劑,目前Pt/C載體型催化劑是PEMFC常用的催化劑,由納米級的Pt顆粒(3-5nm)和支撐這些Pt 顆粒的大比表面積活性炭(20-30nm)構(gòu)成。質(zhì)子交換膜燃料電池商業(yè)化進程中的主要阻礙之一是價格高昂的貴金屬催化劑,從而大量的研究工作集中于開發(fā)新型催化劑以降低鉑載量和增強催化劑的耐久性。催化劑的合成方法決定催化劑的結(jié)構(gòu)、表面形貌和粒徑分布等,這也將直接影響催化劑的性能。
圖7 膜電極組催化層的納米pt催化劑,3-5nm:(左圖)T1探測器檢測,(右圖)T3探測器檢測
圖8 膜電極組催化層的納米pt催化劑,3-5nm:VeriosTLD 探測器檢測 50萬倍和150萬倍(底片顯示)
PEMFC的催化層是由各種不同尺度的顆粒和孔組成的,其內(nèi)部的物理化學(xué)過程十分復(fù)雜,包括電化學(xué)反應(yīng)、電子的遷移、氫氣和氧氣的擴散、質(zhì)子的遷移和擴散,還有水的遷移、擴散、滲透、蒸發(fā)和液化,這一切的實現(xiàn)都離不開催化層的微孔結(jié)構(gòu)。
催化層是由黏結(jié)劑( 如Nafion 或PTFE) 黏結(jié)起來的 Pt /C 顆粒的團聚體組成的,各顆粒之間有許多的微孔。Watanabe 等將催化層內(nèi)的孔分為兩大類: 一類是顆粒團聚體內(nèi)部各顆粒之間較小的空隙,被稱為主孔(孔徑小于100nm的孔屬于主孔); 另一類則是各顆粒團聚體之間的空隙,被稱為次孔(大于100nm 的孔屬于次孔)1。催化層內(nèi)的電催化反應(yīng)主要發(fā)生在主孔內(nèi),而作為黏結(jié)劑的PTFE更容易進入次孔,次孔是氣體和水傳輸?shù)闹饕ǖ馈?/span>
備注1:Shin 等實驗發(fā)現(xiàn),催化層中只有孔徑在70nm 以下的孔才不會被聚合物阻塞住,表明其主、次孔的分界為 70nm;Uchida 等認為主、次孔孔徑分界為 40nm,由于全氟磺酸樹脂和PTFE-C只會存在于次孔中。
催化層的結(jié)構(gòu),主要指的就是其微孔結(jié)構(gòu),由于主孔和次孔的不同作用,不同的微孔總?cè)萘亢椭?、次孔容量比將?dǎo)致迥異的電池性能。根據(jù)主、次孔理論,主孔較多時,可增加活化反應(yīng)位,有利于減少催化層內(nèi)的活化損失; 次孔較多時,有利于質(zhì)量傳輸,可減少質(zhì)量傳輸損失。因此,維持足夠數(shù)量的孔隙率和較好的主、次孔比例成為了研究催化層結(jié)構(gòu)優(yōu)化所要關(guān)注的重點。賽默飛電鏡的孔徑分布軟件可滿足此需求。
圖9 催化層結(jié)構(gòu)孔隙率檢測
目前,大多數(shù) MEA 的催化層都是由一定比例的電催化劑( 如 Pt /C) 和 Nafion 組成。在常用 MEA中Nafion 在催化層中的作用有以下 3點: ( 1) 將電化學(xué)反應(yīng)活性區(qū)擴大延伸至催化層內(nèi)部,并有效傳導(dǎo)質(zhì)子; ( 2)黏結(jié)作用,保持催化層的機械穩(wěn)定性; ( 3) Nafion上的親水基團有保濕作用,防止膜脫水。
盡管在催化層中加入一定量的 Nafion 能有效提高催化劑的利用率,但是催化層中 Nafion含量若過多,不僅會大量覆蓋 Pt /C 顆粒,阻礙電子傳導(dǎo),還可能阻塞催化層內(nèi)部的微型孔,導(dǎo)致內(nèi)部水和反應(yīng)氣體的傳輸通道受阻,這樣會大大減弱電池的性能,尤其是在高電流密度時的性能。因此關(guān)于催化層中 Nafion 與催化劑的比例問題,以及如何識別三相1,一直受到研究者們的廣泛關(guān)注。
備注1:在PEMFC中,位于三相區(qū)(3-phase region)的Pt顆粒會參與反應(yīng),通常三相區(qū)表示載體C、催化劑Pt、離聚物(Ionomer,如全氟磺酸)
圖10 催化層離聚物與三相反應(yīng)區(qū)。 Apreo 2可以快速識別離聚物/C、Pt/C及三相區(qū)
PEMFC的普及和商業(yè)化目前還受電池性能和價格的影響,MEA催化層結(jié)構(gòu)的不斷改善也是PEMFC 實現(xiàn)商業(yè)化的有效途徑之一。
參考資料
1.Warshay M, Prokopius PR. The fuel cell in space: yesterday, today and tomorrow [J]. Journal of Power Sources, 1990, 29: 193-200.
2.Steele BCH, Heinzel A. Materials for fuel-cell technologies [J]. Nature, 2001, 414(6861):
3.Sharaf OZ, Orhan MF. An overview of fuel cell technology: fundamentals and applications [J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853.4.蘇凱華. 新型質(zhì)子交換膜燃料電池催化層結(jié)構(gòu)及其性能研究 [D]. 上海: 上海交通大學(xué), 2015.5. 王誠, 王樹博, 張劍波, 等. 車用質(zhì)子交換膜燃料電池材料部件 [J]. 化學(xué)進展, 20156. 汪嘉澍, 潘國順, 郭丹. 質(zhì)子交換膜燃料電池膜電極組催化層結(jié)構(gòu) [J]. 化學(xué)進展, 2012, 24(10): 1906-19137. Kim K H, Lee K Y, Kim H J, et al. The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method[J]. International Journal of Hydrogen Energy, 2010, 35(5): 2119-2126.8. Uchida M, Aoyama Y, Eda N, et al. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE‐loaded carbon on the catalyst layer of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 1995, 142(12): 4143.9. Curtin D E, Lousenberg R D, Henry T J, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of power Sources, 2004, 131(1-2): 41-48.10. Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—A review[J]. Journal of Power Sources, 2012, 208: 96-119.11. Proton exchange membrane fuel cells: materials properties and performance[M]. CRC press, 2009.
立即詢價
您提交后,專屬客服將第一時間為您服務(wù)