供電系統(tǒng)的抗干擾設計
對傳感器、儀器儀表正常工作危害嚴重的是電網(wǎng)尖峰脈沖干擾,產生尖峰干擾的用電設備有:電焊機、大電機、可控機、繼電接觸器、帶鎮(zhèn)流器的充氣照明燈,甚至電烙鐵等。尖峰干擾可用硬件、軟件結合的辦法來抑制。
用硬件線路抑制尖峰干擾的影響
常用辦法主要有三種:
?、僭趦x器交流電源輸入端串入按頻譜均衡的原理設計的干擾控制器,將尖峰電壓集中的能量分配到不同的頻段上,從而減弱其破壞性;
?、谠趦x器交流電源輸入端加超級隔離變壓器,利用鐵磁共振原理抑制尖峰脈沖;
?、墼趦x器交流電源的輸入端并聯(lián)壓敏電阻,利用尖峰脈沖到來時電阻值減小以降低儀器從電源分得的電壓,從而削弱干擾的影響。
利用軟件方法抑制尖峰干擾
對于周期性干擾,可以采用編程進行時間濾波,也就是用程序控制可控硅導通瞬間不采樣,從而有效地消除干擾。
采用硬、軟件結合的看門狗 watchdog 技術抑制尖峰脈沖的影響
軟件:在定時器定時到之前,CPU訪問一次定時器,讓定時器重新開始計時,正常程序運行,該定時器不會產生溢出脈沖,watchdog也就不會起作用。一旦尖峰干擾出現(xiàn)了“飛程序”,則CPU就不會在定時到之前訪問定時器,因而定時信號就會出現(xiàn),從而引起系統(tǒng)復位中斷,保證智能儀器回到正常程序上來。
實行電源分組供電
例如:將執(zhí)行電機的驅動電源與控制電源分開,以防止設備間的干擾。
采用噪聲濾波器也可以有效地抑制交流伺服驅動器對其它設備的干擾。
該措施對以上幾種干擾現(xiàn)象都可以有效地抑制。
采用隔離變壓器
考慮到高頻噪聲通過變壓器主要不是靠初、次級線圈的互感耦合,而是靠初、次級寄生電容耦合的,因此隔離變壓器的初、次級之間均用屏蔽層隔離,減少其分布電容,以提高抵抗共模干擾能力。
采用高抗干擾性能的電源
如利用頻譜均衡法設計的高抗干擾電源。這種電源抵抗隨機干擾非常有效,它能把高尖峰的擾動電壓脈沖轉換成低電壓峰值(電壓峰值小于TTL電平)的電壓,但干擾脈沖的能量不變,從而可以提高傳感器、儀器儀表的抗干擾能力。
2、信號傳輸通道的抗干擾設計
光電耦合隔離措施
在長距離傳輸過程中,采用光電耦合器,可以將控制系統(tǒng)與輸入通道、輸出通道以及伺服驅動器的輸入、輸出通道切斷電路之間的聯(lián)系。如果在電路中不采用光電隔離,外部的尖峰干擾信號會進入系統(tǒng)或直接進入伺服驅動裝置,產生一種干擾現(xiàn)象。
光電耦合的主要優(yōu)點是能有效地抑制尖峰脈沖及各種噪聲干擾,使信號傳輸過程的信噪比大大提高。干擾噪聲雖然有較大的電壓幅度,但是能量很小,只能形成微弱電流,而光電耦合器輸入部分的發(fā)光二極管是在電流狀態(tài)下工作的,一般導通電流為10mA~15mA,所以即使有很大幅度的干擾,這種干擾也會由于不能提供足夠的電流而被抑制掉。
雙絞屏蔽線長線傳輸
信號在傳輸過程中會受到電場、磁場和地阻抗等干擾因素的影響,采用接地屏蔽線可以減小電場的干擾。雙絞線與同軸電纜相比,雖然頻帶較差,但波阻抗高,抗共模噪聲能力強,能使各個小環(huán)節(jié)的電磁感應干擾相互抵消。另外,在長距離傳輸過程中,一般采用差分信號傳輸,可提高抗干擾性能。
局部產生誤差的消除
在低電平測量中,對于在信號路徑中所用的(或構成的)材料必須給予嚴格的注意,在簡單的電路中遇到的焊錫、導線以及接線柱等都可能產生實際的熱電勢。由于它們經常是成對出現(xiàn),因此盡量使這些成對的熱電偶保持在相同的溫度下是很有效的措施,為此一般用熱屏蔽、散熱器沿等溫線排列或者將大功率電路和小功率電路分開等辦法,其目的是使熱梯度減到小兩個不同廠家生產的標準導線(如鎳鉻一康銅線)的接點可能產生0.2mV/℃的溫漂,這相當于高精度低漂移的運放管(OP·27CP)的溫漂,是斬波放大器(7650CPA)溫漂的兩倍。雖然采用插座開關、接插件、繼電器等形式能使更換電器元件或組件方便一些,但缺點是可能產生接觸電阻、熱電勢或兩者兼而有之,其代價是增加低電平分辨力的不穩(wěn)定性,也就是說它比直接連接系統(tǒng)的分辨力要差、精度要低、噪聲增加、可靠性降低。因此,在低電平放大中盡可能地不使用開關、接插件是減少故障、提高精度的重要措施。