


在氣候變暖的背景下,土壤有機碳分解溫度敏感性(Q10)的研究主要集中在表層土壤,而深層土壤有機碳分解特征及其控制因子還未得到充分的認識,這將會明顯增加陸地生態(tài)系統(tǒng)土壤碳庫—氣候反饋的強度和方向預測的不確定性。

圖1.不同海拔和土層間Q10值的分布,Q10-cum,基于128天累積培養(yǎng)呼吸計算;Q10-q,基于累積消耗碳組分0-0.1%、0.2-0.3%、0.4-0.5%計算;Q10-k基于模型模擬快庫、慢庫、惰庫計算。

表1.海拔和土層對不同Q10的影響
研究結果發(fā)現(xiàn)不同海拔和不同土層土壤有機碳的化學穩(wěn)定性和物理化學穩(wěn)定性都存在顯著差異。高海拔地區(qū)(海拔3600米以上的冷杉林和高山草甸)土壤有機碳的化學抗性高于低海拔地區(qū)。土壤有機碳分解的Q10受土壤深度和海拔高度的顯著影響。而深度對Q10的影響遠小于海拔梯度對Q10的影響。高海拔地區(qū)土壤有機碳礦化的溫度敏感性高于低海拔地區(qū)。

圖2.隨機森林模型明確氣候因素、土壤理化性質、化學組分和物理保護對Q10-q的影響
土壤有機碳的化學性質在土壤有機碳礦化溫度敏感性的變異中起主要解釋作用,其中有機碳疏水性、累積礦化碳組分和烷基碳/氧烷基碳比率為重要性前三的土壤有機碳化學性質;土壤有機碳物理保護作用次之。


圖3.氣候、土壤理化性質、化學組分和物理保護對Q10的影響
UPGRADED!


可進行恒溫或變溫培養(yǎng)設定;
溫度控制波動優(yōu)于±0.05℃;
平均升降溫速率不小于1°C/min;
150ml樣品瓶適配25位樣品盤;
具有CO2預降低的雙回路設計;
一體化設計,內(nèi)置CO2 H2O模塊;
可以外接濃度和同位素分析儀等。
02 PRI-8800 實驗設計
03 PRI-8800相關文獻信息
1.Li, C., Xiao, C.W., Guenet, B., Li, M.X., Xu, L., He, N.P. 2022. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe. Soil Biology and Biochemistry 167, 108589.
2.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.
3.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.
4.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.
5.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.
6.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.
7.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.
8.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.
9.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.
10.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.
11.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.
12.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.
13.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.
14.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.
15.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.
16.何念鵬, 劉遠, 徐麗, 溫學發(fā), 于貴瑞, 孫曉敏. 2018. 土壤有機質分解溫度敏感性研究:培養(yǎng)與測定模式. 生態(tài)學報, 38: 4045-4051.
17.Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.
相關產(chǎn)品
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,未經(jīng)本網(wǎng)授權不得轉載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,應在授權范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關法律責任。
- 本網(wǎng)轉載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內(nèi)容、版權等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關權利。