分散穩(wěn)定性
Nicomp® 和 AccuSizer®
配制兩相分散體的一個共同目標是最大限度地提高產(chǎn)品的穩(wěn)定性或保質(zhì)期。懸浮液和乳液都是如此。粒徑和表面電荷(zeta 電位)都是影響懸浮液穩(wěn)定性的重要物理特性。本應(yīng)用說明解釋了如何使用粒徑和 zeta 電位測量來提高分散穩(wěn)定性。
介紹
懸浮液(固體/液體)和乳液(液體/液體)都是兩相分散體的例子。溶劑是連續(xù)相,顆?;蛉橐阂旱螛?gòu)成分散相。在穩(wěn)定的分散體中,分散相會隨著時間的推移保持一致的粒徑并保持懸浮狀態(tài)。不穩(wěn)定的乳液可以隨著油相“乳化”到頂部而相分離,或者乳液液滴由于聚集或奧斯特瓦爾德熟化而的作用,隨時間推移而增加。不穩(wěn)定的懸浮液會絮凝/聚集,然后沉降到底部,如圖 1 所示。
圖 1. 穩(wěn)定性與不穩(wěn)定性
創(chuàng)建穩(wěn)定的分散體涉及控制連續(xù)相和分散相的化學(xué)和物理性質(zhì)。通過選擇不同的表面活性劑和濃度、改變鹽濃度、控制pH值以及所有這些因素的組合,可以優(yōu)化連續(xù)相的化學(xué)性質(zhì)。通過在表面添加聚合物涂層(空間穩(wěn)定)、增加表面電荷(靜電穩(wěn)定)以及兩者的結(jié)合,可以使分散相更加穩(wěn)定。
當顆粒表面沒有電荷時,顆??梢宰銐蚓o密地相互接近,以至于沒有屏障阻止它們聚集,從而降低分散穩(wěn)定性。但是,如果表面上存在足夠的電荷,粒子就會像磁鐵一樣相互排斥,并且永遠不會足夠接近以聚集,如圖2所示。
圖2.粒子吸引聚集(左),粒子排斥分離(右)
從測量的角度來看,使用zeta電位分析來表征表面電荷。zeta 電位是距離顆粒不遠的電位,單位為 mV,如圖 3 所示。 測量是通過對懸浮液施加電場并通過電泳光散射檢測顆粒的運動來進行的。粒子移動的方向決定了符號(+或-),而速度決定了電荷的大小??梢酝ㄟ^檢測頻移(相位多普勒)或相移(光散射相位分析或 PALS)來分析運動。
圖3.Zeta電位
zeta 電位測量的主要結(jié)果是電泳遷移率 μ,然后使用以下公式計算 zeta 電位:
zeta 電位是正電荷還是負電荷并不重要,重要的是絕對大小。較高的 zeta 電位值是穩(wěn)定性高的指標。不同種類的分散體需要不同的電荷值來增強穩(wěn)定性,如圖4所示(僅粗略指南)。
樣品類型 | ZETA POTENTIAL |
金屬溶膠 | >40 mV |
金屬氧化物 | >30 mV |
乳劑 | >20 mV |
乳劑 | >10 mV |
通過改變 zeta 電位來提高穩(wěn)定性通常只對小顆粒(平均尺寸低于 1 μm)很重要,對于乳液而言,這個尺寸可能會更大。
等電點 (IEP)
分散體的等電點 (IEP) 是 zeta 電位等于零時的 pH 值 1 。這是進行 zeta 電位測量的常見原因,因為 IEP 指示可能導(dǎo)致分散不穩(wěn)定的表面化學(xué)條件。這個概念如圖 5 所示。
圖5.等電點
結(jié)果:食品乳液
通過用pH 6.8至3.2的弱酸滴定來改變食品乳液的pH值。使用 PALS 技術(shù)在每個pH值下進行進行 7 次測量(施加電場 = 4 v/cm),并報告平均值。zeta 電位與 pH 值的關(guān)系圖如圖 6 所示。
圖6.Zeta 電位與 pH 值的關(guān)系
乳液樣品在pH 6.5時的粒度分布如圖7所示,在pH 3.5下的粒徑分布如圖8所示。請注意,在較低的pH值下,液滴尺寸(302 – 496 nm)急劇增加,表明乳液正在不穩(wěn)定。
圖7.pH 6.5 時的粒徑,zeta 電位 = -34 mV
圖8.pH 3.5 時的粒徑,zeta 電位 = -9.8 mV
結(jié)果:氧化鋅懸浮液
購買了氧化鋅 (ZnO) “納米粉末”(Sigma Aldrich,#544906),以研究 pH 值對 zeta 電位和粒徑的影響。所有樣品均通過用 Igepal CA-630 非離子表面活性劑分散并使用超聲探頭進行 3 分鐘的超聲波制備.2 pH 值 6.9 和 11.2 的 zeta 電位值如圖 9 和圖 10 所示。請注意,即使接近零,也會產(chǎn)生非常穩(wěn)定的 zeta 電位結(jié)果。
圖 9.pH 6.9 時 ZnO 的 Zeta 電位
圖 10.pH 11.2 時 ZnO 的 Zeta 電位
圖11顯示了粒徑的變化,從單峰分布(pH 6.9時峰值為198 nm 藍色峰)到雙峰分布(pH 11.2時峰值為204和573 nm 粉紅色峰)。當 zeta 電位接近零時,懸浮液不穩(wěn)定并開始聚集。
圖 11.pH 值為 6.9(藍色)和 11.2(粉紅色)時的 ZnO 粒徑
參考
1 Entegris Application Note, Isoelectric Point (IEP)
2 Entegris Technical Note, DLS Sample Preparation
相關(guān)產(chǎn)品
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權(quán)行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權(quán)等法律責任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。