計(jì)及多重不確定性的規(guī)?;妱悠嚱尤肱潆娋W(wǎng)調(diào)度方法及解決方案
摘要:規(guī)模日益增長的電動汽車和可再生能源帶來的不確定性給配電網(wǎng)的安全運(yùn)營帶來了嚴(yán)峻挑戰(zhàn)。為綜合考慮多重不確定性、平衡運(yùn)營成本與系統(tǒng)可靠性,首先,提出一種基于分布魯棒聯(lián)合機(jī)會約束的電動汽車-配電網(wǎng)充放電調(diào)度模型。該模型將節(jié)點(diǎn)電壓、支路功率、備用需求等通過聯(lián)合機(jī)會約束建模,可以直觀地管理系統(tǒng)整體的可靠性。然后,為求解該模型,基于Bonferroni近似方法將聯(lián)合機(jī)會約束問題轉(zhuǎn)化為混合整數(shù)二次規(guī)劃模型,其中,風(fēng)險等級也被視為決策變量。隨后,在不同電力系統(tǒng)上驗(yàn)證了所提模型的有效性和可擴(kuò)展性。結(jié)果表明,所提模型克服了經(jīng)典的隨機(jī)優(yōu)化和魯棒優(yōu)化存在的問題,能夠有效平衡成本和可靠性,計(jì)算效率高、可擴(kuò)展性好,較Bonferroni近似方法降低約6.5%的成本。
關(guān)鍵詞:電動汽車;配電網(wǎng);Bonferroni近似方法;不確定性;風(fēng)險管理
一、引言
截至2023年6月底,中國電動汽車(EV)保有量已經(jīng)超過1200萬輛,大規(guī)模接入電網(wǎng)的EV若不進(jìn)行合理調(diào)度,將對電網(wǎng)安全運(yùn)營帶來嚴(yán)峻挑戰(zhàn)。同時,EV作為一種具有時空和容量高度靈活性的負(fù)荷,具有很大的調(diào)節(jié)潛力,可以作為靈活性資源為配電網(wǎng)提供輔助服務(wù)并帶來安全效益,增強(qiáng)電力系統(tǒng)管控不確定性風(fēng)險的能力。
單輛EV調(diào)節(jié)能力有限,無法參與電力市場EV聚合商作為EV與配電網(wǎng)的中間體,能夠管理EV充放電和電力市場交易,與配電網(wǎng)進(jìn)行互動。通過建立EV聚合模型,便于從整體角度分析EV集群的可調(diào)節(jié)潛力,減少模型中的變量個數(shù),降低模型復(fù)雜度與EV數(shù)量的關(guān)聯(lián)。EV接入和離開充電站的時間、充電需求、滲透率日益增加的光伏/風(fēng)電等可再生能源、電網(wǎng)中的非靈活性負(fù)荷等均存在著不確定性,如何處理不確定性是EV并網(wǎng)充放電調(diào)度研究中的關(guān)鍵性問題。
二、 算法對比分析
現(xiàn)有處理不確定性的經(jīng)典方法包括隨機(jī)優(yōu)化(SO)、魯棒優(yōu)化(RO)、機(jī)會約束舊等。其中,SO一般以目標(biāo)函數(shù)的數(shù)學(xué)期望為目標(biāo),考慮了EV到達(dá)/離開時間、非靈活性負(fù)荷、市場價格的隨機(jī)性,配電網(wǎng)和EV聚合商利益的期望值。然而,SO往往需要場景驅(qū)動,復(fù)雜度與場景的數(shù)量高度相關(guān),場景過少可能導(dǎo)致對隨機(jī)性的刻畫不準(zhǔn)確,場景過多則帶來很大的計(jì)算負(fù)擔(dān),與SO不同,RO關(guān)注可能出現(xiàn)的最壞情況,考慮隨機(jī)的可再生能源出力和負(fù)荷,通過強(qiáng)對偶理論和列與約束生成算法來轉(zhuǎn)化和求解兩階段RO問題。與SO問題相比,RO復(fù)雜度與場景的個數(shù)關(guān)聯(lián)較低,但由于最壞的情況在實(shí)際中可能以很低的概率出現(xiàn),這種方法可能過于保守。此外,由于SO和RO均未將風(fēng)險系數(shù)考慮在建模中,無法直觀地管理系統(tǒng)風(fēng)險。
三、 算法處理方法
為解決SO和RO方法存在的問題并平衡經(jīng)濟(jì)成本與系統(tǒng)安全,分布式魯棒機(jī)會約束(distributionally robust chance constraint,DRCC)模型受到越來越多的關(guān)注。通過建立DRCC模型處理了非靈活性負(fù)荷、可再生能源出力、市場價格等不確定性因素。采用機(jī)會約束限制電壓、功率等范圍以確保配電網(wǎng)在一定概率下安全運(yùn)行。采用DRCC模型對EV的可調(diào)空間進(jìn)行建模。然而,上述研究中的多個機(jī)會約束是獨(dú)立的,忽視了機(jī)會約束之間可能存在的關(guān)聯(lián),同時在單一機(jī)會約束的風(fēng)險參數(shù)選擇上具有一定主觀性,對每條約束取相同的風(fēng)險等級,為此,有必要聯(lián)合考慮機(jī)會約束,將問題建模為分布式魯棒聯(lián)合機(jī)會約束(distributionally robust jointchance constraint,DRJCC)模型。然而,DRJCC模型是隱式的,難以求解,經(jīng)典的Bonferroni 近似Bonferroni approximation,BA)方法直接將聯(lián)合約束轉(zhuǎn)化為獨(dú)立約束,并根據(jù)Bonferroni不等式預(yù)先分配獨(dú)立約束的風(fēng)險等級,這可能導(dǎo)致模型過于保守為降低模型保守性,為此提出 Bonferroni 近似(optimized Bonferroni approximation,OBA)方法用于近似機(jī)會約束問題,這種方法在滿足Bonferroni不等式的前提下將獨(dú)立約束的風(fēng)險等級也視為變量進(jìn)行優(yōu)化,可以降低模型的保守性。進(jìn)一步地,將 OBA方法求解DRJCC問題應(yīng)用到考慮不確定性的潮流問題中,提出了基于多項(xiàng)式展開近似、連續(xù)凸近似等方法,并對比了不同近似方法的表現(xiàn),盡管對采用 OBA方法求解的DRICC模型已有了初步的研究,但其應(yīng)用在大規(guī)模EV接人配電網(wǎng)的調(diào)度研究中尚且罕見。為此,本文在大規(guī)模EV接人配電網(wǎng)的調(diào)度問題中建立了 DRJCC模型,聯(lián)合考慮了節(jié)點(diǎn)電壓、線路功率、備用需求,并采用OBA的方法求解。與相關(guān)研究相比,本文的主要貢獻(xiàn)如下:
1)為高效處理多重隨機(jī)性下EV接入配電網(wǎng)的調(diào)度問題,建立了DRJCC模型,算例表明所提模型緩解了 SO 模型求解時間長、RO的模型過于保守等問題。
2)為處理難以求解的聯(lián)合機(jī)會約束模型,提出一種 OBA方法,將風(fēng)險等級也視為決策變量,將問題轉(zhuǎn)化成混合整數(shù)二次規(guī)劃模型,降低了模型的保守性,與預(yù)先確定風(fēng)險等級的方法相比,在滿足可靠度要求的前提下降低約6.5%的成本。
3)所提模型將節(jié)點(diǎn)電壓、支路功率、備用需求等綜合考慮作為聯(lián)合機(jī)會約束建模,能夠通過設(shè)定系統(tǒng)整體風(fēng)險等級參數(shù)以直觀管理系統(tǒng)風(fēng)險,并便于平衡系統(tǒng)運(yùn)營成本和可靠度。
三、 解決方案
圖1 有序充電管理系統(tǒng)示意圖
圖2平臺結(jié)構(gòu)圖
有序充電管理系統(tǒng)由預(yù)測算法、能量管理策略、有序充電策略和充電樁運(yùn)營管理系統(tǒng)等構(gòu)成。預(yù)測算法包括光伏、風(fēng)力發(fā)電預(yù)測和負(fù)荷預(yù)測,是利用歷史數(shù)據(jù)對未來 24 小時至72小時的風(fēng)力、光伏發(fā)電和負(fù)荷需求進(jìn)行預(yù)測,主要目的是為能量管理系統(tǒng)和有序充電策略提供未來時間的可用負(fù)荷容量和能量管理策略。通過對儲能裝置的充放電調(diào)控和引導(dǎo)充電需求,實(shí)現(xiàn)負(fù)荷的削峰填谷,提高電網(wǎng)運(yùn)行穩(wěn)定性,降低充電成本,通過以上算法和軟件構(gòu)成的一體化充電服務(wù)體系來提高運(yùn)營競爭力。
四、安科瑞有序充電云平臺具體的功能
平臺除了對充電樁的監(jiān)控外,還對充電站的光伏發(fā)電系統(tǒng)、儲能系統(tǒng)以及供電系統(tǒng)進(jìn)行集中監(jiān)控和統(tǒng)一協(xié)調(diào)管理,提高充電站的運(yùn)行可靠性,降低運(yùn)營成本,平臺系統(tǒng)及虛擬電廠的架構(gòu)如圖3、圖4所示。
圖3 充電樁運(yùn)營管理平臺系統(tǒng)架構(gòu)
圖4 虛擬電廠與電力交易結(jié)構(gòu)圖
能源規(guī)劃:采用魯棒優(yōu)化方法進(jìn)行優(yōu)化配置,提供經(jīng)濟(jì)的容量規(guī)劃方案。
圖5 虛能源規(guī)劃示意圖
優(yōu)化調(diào)度:提高新能源消納
圖6 優(yōu)化調(diào)度示意圖
儲能峰谷套利:不僅可以平衡電網(wǎng)負(fù)荷,還可以節(jié)省電費(fèi),增加收益
圖7 優(yōu)化儲能峰谷套利調(diào)度示意圖
削峰填谷:配合儲能設(shè)備、低充高放
圖8 削峰填谷示意圖
需量控制:能量儲存、充放電功率跟蹤
圖8 削峰填谷示意圖
柔性擴(kuò)容:短期用電功率大于變壓器容量時,儲能快速放電,滿足負(fù)載用能要求
圖9 柔性擴(kuò)容示意圖
五、產(chǎn)品選型
安科瑞為廣大用戶提供慢充和快充兩種充電方式,便攜式、壁掛式、落地式等多種類型的充電樁,包含智能7kw/21kw交流充電樁,30kw直流充電樁,60kw/80kw/120kw/180kw直流一體式充電樁來滿足新能源汽車行業(yè)快速、經(jīng)濟(jì)、智能運(yùn)營管理的市場需求。實(shí)現(xiàn)對動力電池快速、高效、安全、合理的電量補(bǔ)給,同時為提高公共充電樁的效率和實(shí)用性,具有有智能監(jiān)測:充電樁智能控制器對充電樁具備測量、控制與保護(hù)的功能;智能計(jì)量:輸出配置智能電能表,進(jìn)行充電計(jì)量,具備完善的通信功能;云平臺:具備連接云平臺的功能,可以實(shí)現(xiàn)實(shí)時監(jiān)控,財務(wù)報表分析等等;遠(yuǎn)程升級:具備完善的通訊功能,可遠(yuǎn)程對設(shè)備軟件進(jìn)行升級;保護(hù)功能:具備防雷保護(hù)、過載保護(hù)、短路保護(hù),漏電保護(hù)和接地保護(hù)等功能;適配車型:滿足國標(biāo)充電接口,適配所有符合國標(biāo)的電動汽車,適應(yīng)不同車型的不同功率。下面是具體產(chǎn)品的型號和技術(shù)參數(shù)。
產(chǎn)品圖 | 名稱 | 技術(shù)參數(shù) |
AEV200-AC007D | 額定功率:7kW 輸出電壓:AV220V 充電槍:單槍 充電操作:掃碼/刷卡 防護(hù)等級:IP65 通訊方式:4G、Wifi 安裝方式:立柱式/壁掛式 | |
AEV210-AC007D | 額定功率:7kW 輸出電壓:AV220V 充電槍:單槍 人機(jī)交互:3.5寸顯示屏 充電操作:掃碼/刷卡 防護(hù)等級:IP54 通訊方式:4G、Wifi 安裝方式:立柱式/壁掛式 | |
AEV300-AC021D | 額定功率:21kW 輸出電壓:AV220V 充電槍:單槍 人機(jī)交互:3.5寸顯示屏 充電操作:掃碼/刷卡 防護(hù)等級:IP54 通訊方式:4G、Wifi 安裝方式:立柱式/壁掛式 | |
AEV200-DC030D | 額定功率:30kW 輸出電壓:DC200V-750V 充電槍:單槍 人機(jī)交互:7寸觸摸屏 充電操作:掃碼/刷卡 防護(hù)等級:IP54 通訊方式:以太網(wǎng)、4G(二選一) | |
AEV200-DC060D/ AEV200-DC080D | 額定功率:60kW/80kW 輸出電壓:DC200V-1000V 充電槍:單槍 人機(jī)交互:7寸觸摸屏 充電操作:掃碼/刷卡 防護(hù)等級:IP54 通訊方式:以太網(wǎng)、4G(二選一) | |
AEV200-DC060S/ AEV200-DC080S | 額定功率:60kW/80kW 輸出電壓:DC200V-1000V 充電槍:雙槍 人機(jī)交互:7寸觸摸屏 充電操作:掃碼/刷卡 防護(hù)等級:IP54 通訊方式:以太網(wǎng)、4G(二選一) | |
AEV200-DC120S/ AEV200-DC180S | 額定功率:120kW/180kW 輸出電壓:DC200V-1000V 充電槍:雙槍 人機(jī)交互:7寸觸摸屏 充電操作:掃碼/刷卡 防護(hù)等級:IP54 通訊方式:以太網(wǎng)、4G(二選一) | |
AEV200-DC240M4/ AEV200-DC480M8/ AEV200-DC720M12 | 額定功率:240kW/480kW/720kw 輸出電壓:DC150V-1000V 充電終端支持:常規(guī)單雙槍終端 防護(hù)等級:IP54 | |
AEV200-DC250AD | 最大輸出:250A 1個充電接口; 支持掃碼、刷卡支付; 4G、以太網(wǎng)通訊(二選一) | |
AEV200-DC250AS | 最大輸出:250A 2個充電接口; 支持掃碼、刷卡支付; 4G、以太網(wǎng)通訊(二選一) |
5.2儲能產(chǎn)品
5.3監(jiān)測、保護(hù)、治理的相關(guān)產(chǎn)品
六、應(yīng)用案例
案例一:江陰某光儲充微電網(wǎng)項(xiàng)目
案例二:江陰某研究院微電網(wǎng)項(xiàng)目
七、結(jié)論
本文將考慮輔助市場的EV-配電網(wǎng)充放電調(diào)度問題建模為 DRJCC模型,以平衡運(yùn)營成本和可靠性并克服經(jīng)典SO和RO的缺點(diǎn)。然后,基于OBA方法,將無法求解的聯(lián)合機(jī)會約束轉(zhuǎn)化為混合整數(shù)二次規(guī)劃模型求解,與BA方法不同的是,風(fēng)險等級也被視為決策變量進(jìn)行優(yōu)化,降低了模型的保守性。最后,通過算例驗(yàn)證了模型平衡成本和風(fēng)險的有效性、對EV數(shù)量和更大電力系統(tǒng)的可擴(kuò)展性。本文研究未考慮擬合得到的隨機(jī)變量概率分布與真實(shí)分布之間可能存在的偏差。未來,將進(jìn)一步研究基于模糊概率分布的分布式魯棒優(yōu)化模型,并增加對光伏、風(fēng)電、負(fù)荷、EV充電行為等多維不確定因素之間的相關(guān)性研究。
安科瑞侯文莉
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。