產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學|元素分析|水分測定儀|樣品前處理|試驗機|培養(yǎng)箱


化工儀器網(wǎng)>技術中心>儀器文獻>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

【資訊】顯微“新貴”,看向更深:展望三光子顯微成像技術

來源:筱曉(上海)光子技術有限公司   2025年01月06日 15:12  

隨著飛秒激光技術的不斷進步,顯微“新貴”三光子顯微成像的潛力逐漸展現(xiàn),其在深度成像、分辨率等方面展現(xiàn)出的優(yōu)勢,在活體深層組織成像中具有巨大潛力,有望推動生命科學研究和醫(yī)學診療技術的進步。

 

自1990年雙光子顯微鏡(Two-photon microscopy, 2PM)被報道以來,基于飛秒激光的非線性效應,雙光子顯微鏡相較于常規(guī)連續(xù)光激發(fā)的顯微鏡(如共聚焦顯微鏡),具有兩個明顯的優(yōu)點:①雙光子激發(fā)波長更長,一定程度上可減少對樣品的光漂白和光損傷;②基于非線性效應帶來了光學切片能力,使成像系統(tǒng)中無須共聚焦小孔。

 

相較于可見光波段,近紅外光在生物組織內(nèi)的穿透性更高,衰減程度更小,使成像深度變得更深,使得大多數(shù)以近紅外波長激發(fā)的雙光子顯微鏡迅速成為腦科學結構及功能研究的重要工具。類比于其他光學成像技術,如光學相干斷層成像(OCT)和光聲成像(PAM/PACT)等,其他技術雖在成像深度上同樣具備優(yōu)勢,但在分辨率上通常難以達到雙光子顯微鏡亞微米級的細胞成像分辨率水平。

 

進一步地,康奈爾大學研究團隊于2013年發(fā)現(xiàn)三光子顯微鏡(Three-photon microscppy, 3PM)相比于雙光子能更大程度地利用飛秒激光,以更高的非線性系數(shù)進行更深層樣本的激發(fā)與成像。自此,三光子顯微成像技術逐漸走進大家的視野,彰顯“威力”。

 

圖1 小鼠腦內(nèi)不同成像深度處的雙光子與三光子顯微成像質(zhì)量對比


 

如圖1所示,在雙光子及三光子顯微成像的示例中,隨著深度的增加(> 550 μm),組織深處的三光子成像分辨率顯著由于雙光子顯微鏡。結合自適應光學技術可以進一步獲得令人振奮的結果——三光子顯微成像甚至可以直接透過小鼠顱骨進行神經(jīng)元及血管成像,如圖2所示。


圖2 使用自適應光學技術透過完整顱骨對小鼠神經(jīng)元和血管系統(tǒng)進行三光子成像


 

,成像深度受限于生物組織內(nèi)光子的散射和吸收。就激發(fā)光而言,隨著成像位置越深,到達焦面處的光子就越少??此瓶赏ㄟ^增加激光功率來補償光子的損失,然而生物樣品表面光功率過強則可能會造成樣品損傷的風險。即使控制激發(fā)光束功率低于組織損傷閾值,但隨著焦面變深,激發(fā)光束也會在樣品表面至焦面的“錐體”內(nèi)產(chǎn)生不同程度的背景噪聲。當?shù)竭_某一深度時,背噪強度會徹湮沒信號,最終限制成像深度。在雙光子成像中,目標成像深度一旦超出成像信背比(SBR)極時,縱使增加激發(fā)光功率,也難以提升圖像質(zhì)量。而三光子成像因為具備更高的非線性條件,可有效降低背景,獲得了比雙光子成像更深的范圍。


 

三光子顯微成像看似具有如此顯著的優(yōu)勢,但是實際應用過程中似乎仍面臨不少技術問題。美國Allen腦研究所的學者表示:“三光子成像技術的現(xiàn)狀,類似于早期雙光子誕生時類似的情況——即在成像新技術剛問世的數(shù)年內(nèi),人們在實際成像時仍需要花費大量精力來獲取高質(zhì)量、有意義的圖像?!蹦敲?,相比于較為成熟的雙光子成像技術,目前三光子成像技術發(fā)展還存在哪些難點,又該如何克服?


 

激發(fā)波長的選擇


圖3 800~2800 nm的組織衰減(散射+吸收)示意曲線,主要說明1300 nm和1700 nm處的生物成像窗口


 

與雙光子過程相比,三光子激發(fā)需要具備更長的入射波長。例如,常用的神經(jīng)示蹤劑GCaMPs綠色熒光蛋白,其雙光子激發(fā)波段為920~940 nm,但在三光子激發(fā)時波長則需要拓展至~1300 nm。又比如,紅移探針需要~1100 nm雙光子激發(fā)波長,而三光子中則需要在~1700 nm處激發(fā)。4,5因此可見,波長可調(diào)諧的激光器,相比于單一波長的激光器,能滿足不同的熒光分子的激發(fā)波長調(diào)諧需求,在雙光子、三光子成像研究中占據(jù)主流。實際應用中,就波長而言,針對各類穩(wěn)定調(diào)諧激光器、成像窗口、成像探針等問題,仍有較大發(fā)掘空間。




 

脈寬與壓縮

 



雙光子成像所使用的飛秒激光器產(chǎn)生的脈寬大多為100~150 fs。而三光子過程所依賴的更高非線性,在很大程度上取決于脈沖的峰值功率,所以三光子成像則需要更短的脈寬(~50 fs)。但是在大多數(shù)情況下,如何產(chǎn)生穩(wěn)定且更短的(~50 fs)飛秒脈沖光仍是三光子技術的挑戰(zhàn)之一。此外,因為超短脈沖光束在材料中傳播時,會出現(xiàn)群延遲色散(Group delay dispersion, GDD),導致不同的光譜成分在時間上被拉伸開來,在時域上體現(xiàn)為脈寬變寬,使脈沖峰值功率降低,進而造成多光子信號強度降低、圖像信噪比降低。


 

為了解決上述色散問題,在焦面處產(chǎn)生最佳的非線性信號,人們往往在光學系統(tǒng)中加入脈沖壓縮元件,對群延遲色散進行預補償(預啁啾)。但是,脈寬越短意味著光譜帶寬越大,這使得脈寬壓縮元件的設計與制造工作具有相當大的挑戰(zhàn)性。因此在多光子成像技術發(fā)展歷程中,不少杰出的成像研究者們都曾聚焦于解決飛秒脈沖管理,構建合適的脈寬壓縮組件,使得脈沖在焦平面上的脈寬最短。

 


脈寬壓縮程度至關重要。當脈寬壓縮充足時,保障了三光子信號采集的必要條件;倘若壓縮不充分、脈寬過大,則縱使將功率調(diào)高到燒壞樣品的水平,也根本無法探測到三光子信號。由此見得,針對三光子成像,激光器本身的研究其實仍然大有可為、充滿挑戰(zhàn)。




 

脈沖能量、重復率和平均功率

 



從實現(xiàn)雙光子到實現(xiàn)三光子,由于兩者的激發(fā)截面的差異,三光子的實現(xiàn)不僅需要將脈沖縮短到~50 fs左右,還需要大幅增加單脈沖能量。但是市售顯微物鏡及其他光學元件,幾乎較少針對三光子激發(fā)波長進行高透射、低色散設計及優(yōu)化,很可能使得全系統(tǒng)的透過率僅為10%左右。因此,應當充分考慮如何權衡好峰值功率(脈沖能量)、重復頻率、平均功率這三個主要參數(shù)之間的關系。


 

大多數(shù)情況下,飛秒激光~100 mW左右的平均功率,可在點掃描時確保生物樣品無損傷。而針對上述估算的10%光學系統(tǒng)透過率而言,所采用的三光子成像飛秒激光器則應產(chǎn)生至少~1 W的平均功率。隨之會帶來有趣的問題:1W的平均功率,究竟是以“1 MHz,1 μJ”形式輸出,還是通過“10 MHz,100 nJ”輸出?目前,大多數(shù)三光子成像都是在1 MHz重頻下進行,像素駐留時間為數(shù)微秒,每個像素累積單個或多個脈沖產(chǎn)生的信號,所以可以在每秒數(shù)幀的成像的幀率下產(chǎn)生足夠的信號量。若通過提高重頻以匹配共振鏡諧振頻率,確實可以進一步加速成像幀率,但隨之帶來的是平均功率的增加,可能會增大樣品損傷風險。


 

一味地把單脈沖能量拉高時,理想情況下會產(chǎn)生越來越明亮的多光子信號,但實際情況是:能量過高會導致組織非線性損傷。同理,雖然增大平均功率、重復頻率,可以增強信號并實現(xiàn)高速成像,但功率過大也會導致熱效應過高。這些因素使得激光器波長范圍內(nèi)的三光子成像窗口并不寬裕,而且成像窗口會隨樣品和成像深度產(chǎn)生變化,使三光子成像激光器的參數(shù)選擇變得復雜。已有研究討論了最佳重復頻率與組織散射、成像深度的函數(shù)關系,如圖4所示。從圖中綠色區(qū)域可以看出,入射光最佳參數(shù)范圍隨著深度的增加而明顯變化。例如,在600 μm深度處,重頻越高越好;而在1 mm深度處,則存在1 MHz的優(yōu)重頻。


圖4 在有效衰減長度分別為600 μm和1 mm的散射組織中,實現(xiàn)三光子成像的最佳單脈沖能量和重頻


 

相比于傳統(tǒng)雙光子成像飛秒激光器80 MHz的高重頻,三光子成像時,需要激光器具有較低重復率、較高的單脈沖能量,因此往往利用1030 nm高能量激光來泵浦可調(diào)諧光學參量放大器(OPA),從而調(diào)諧至相對合適的激發(fā)波長。大多數(shù)OPA的波長、重頻、功率雖然可調(diào),但通常只能以恒定不變的泵浦能量運轉(zhuǎn),因此成像時一般需確保組織深處足夠的能量裕量,而對較淺平面成像時則需進行溫和地能量控制。


 

由此可見,激光器能量、功率、光束模式以及長期穩(wěn)定性,也屬于三光子成像技術的考量范疇。特別是在用于快速三光子成像時,由于單像素駐留時間短,激光噪聲抖動對于圖像質(zhì)量影響突出。而在數(shù)智光學時代,在增強多光子成像深度和對比度方面,迅猛發(fā)展的自適應光學技術也充滿著巨大潛力及研究價值。


參考文獻:今日材料論文 

免責聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,未經(jīng)本網(wǎng)授權不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,應在授權范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關法律責任。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任。
  • 如涉及作品內(nèi)容、版權等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關權利。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618