SM 9000光譜儀
- 公司名稱 北京易科泰生態(tài)技術(shù)有限公司
- 品牌 其他品牌
- 型號(hào)
- 產(chǎn)地
- 廠商性質(zhì) 代理商
- 更新時(shí)間 2018/1/24 13:29:25
- 訪問(wèn)次數(shù) 2358
聯(lián)系方式:文老師18210150760 查看聯(lián)系方式
聯(lián)系我們時(shí)請(qǐng)說(shuō)明是化工儀器網(wǎng)上看到的信息,謝謝!
土壤與植物生理生態(tài)研究監(jiān)測(cè)、環(huán)境氣象監(jiān)測(cè)、水文水質(zhì)及地下水監(jiān)測(cè)、水土保持研究監(jiān)測(cè)、荒漠化監(jiān)測(cè)、精準(zhǔn)農(nóng)業(yè)以及動(dòng)物生態(tài)研究等儀器技術(shù)的引進(jìn)推廣和系統(tǒng)集成,并為生態(tài)環(huán)境實(shí)驗(yàn)研究和規(guī)劃設(shè)計(jì)提供技術(shù)方案和分析測(cè)量。
按探測(cè)器 | 其它 | 光譜范圍 | 近紅外 |
---|---|---|---|
價(jià)格區(qū)間 | 面議 |
SM9000光譜儀是一種高分辨率光纖光譜測(cè)量?jī)x,測(cè)量范圍涵蓋紫外光、可見光乃至近紅外波段。SM9000既可以單獨(dú)使用,也可以與FKM多光譜熒光動(dòng)態(tài)顯微成像系統(tǒng)、FL3500雙調(diào)制葉綠素?zé)晒鈨x等儀器聯(lián)用,測(cè)量各種熒光的光譜組成。由于其具備超高的靈敏度,甚至可以測(cè)量單個(gè)細(xì)胞激發(fā)熒光的光譜。每秒可記錄100組16bits分辨率的光譜數(shù)據(jù)。
功能特點(diǎn):
- 超高靈敏度,可檢測(cè)單個(gè)細(xì)胞的熒光光譜
- 超高分辨率,可檢測(cè)10μs - 10ms的閃光
- 采集頻率達(dá)100次/秒,可檢測(cè)動(dòng)態(tài)光譜
- 積分時(shí)間從1毫秒到數(shù)分鐘可調(diào)
- 模塊化設(shè)計(jì),小巧耐用,熱穩(wěn)定性高
- 產(chǎn)熱量極低
?
技術(shù)參數(shù):
- 光譜范圍:200 - 980nm
- 分辨率:可檢測(cè)10μs - 10ms的閃光
- 采集頻率:100次/秒
- 積分時(shí)間:1毫秒到數(shù)分鐘可調(diào)
- 光學(xué)入口:直徑0.5,數(shù)值孔徑(NA)=0.22,可拆卸SMA接頭
- 入射狹縫:70µm×1400µm
- 光柵:平場(chǎng)型校正
- 波長(zhǎng)精確度:< 0.5nm
- 再現(xiàn)性:< 0.1nm
- 溫度漂移:< 0.01nm/K
- 像素光譜距離:0.8nm
- FWHM半高寬:3 - 4nm
- 雜散光:0.1%(氙燈340nm測(cè)量)
- CCD陣列像素?cái)?shù):1044×64
- 像素尺寸:24×24mm2
- 系統(tǒng)數(shù)據(jù):16Bit模數(shù)轉(zhuǎn)換
- 可聯(lián)用儀器:FKM多光譜熒光動(dòng)態(tài)顯微成像系統(tǒng)、FL3500雙調(diào)制葉綠素?zé)晒鈨x等
?與FKM多光譜熒光動(dòng)態(tài)顯微成像系統(tǒng)聯(lián)用的SM9000
應(yīng)用案例:
與FKM系統(tǒng)聯(lián)用研究銅指示植物海州香薷Elsholtzia splendens的葉綠素?zé)晒饧捌涔庾V組成(Peng,2013,Environ. Sci. Technol)
與FL3500系統(tǒng)聯(lián)用研究藍(lán)隱藻Guillardia theta的葉綠素?zé)晒饧捌涔庾V組成(Cheregi,2015,Journal of Experimental Botany)
產(chǎn)地:歐洲
參考文獻(xiàn):
- Bernát G, et al. 2017. On the origin of the slow M–T chlorophyll a luorescence decline in cyanobacteria: interplay of short-term light-responses. Photosynthesis Research, DOI 10.1007/s11120-017-0458-8
- Selyanin V, et al. 2016. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. Photosynthesis research, 128(1): 35-43
- Tilstone G, et al. 2016. Effect of CO2 enrichment on phytoplankton photosynthesis in the North Atlantic sub-tropical gyre. Progress in Oceanography, 158: 76-89
- Mishra K B, et al. 2016. Plant phenotyping: a perspective. Indian Journal of Plant Physiology, 21(4): 514-527
- Cheregi O, Kotabová E, Prášil O, et al. 2015. Presence of state transitions in the cryptophyte alga Guillardia theta . Journal of Experimental Botany, 66: 6461-6470
- Li G, Brown C M, Jeans J A, et al. 2015. The nitrogen costs of photosynthesis in a diatom under current and future pCO2. New Phytologist, 205:533-543
- Kotabová E, Jarešová J, Kaňa R, et al. 2014. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochimica et Biophysica Acta – Bioenergetics, 1837:734-743
- Šebela D, Olejní?ková J, Sotolá? R, et al. 2014. The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. BBA , 1817: 1237-1247
- Peng H, et al. 2013. Toxicity and De?ciency of Copper in Elsholtzia splendens A?ect Photosynthesis Biophysics, Pigments and Metal Accumulation. Environ. Sci. Technol., 47 (12): 6120-6128