納米空間分辨超快光譜和成像系統(tǒng)
“空間和時間的結(jié)合”— 納米分辨和飛秒別的光譜
超快光譜技術(shù)擁有諸多色,例如*的時間分辨率,豐富的光與物質(zhì)的非性相互作用,可以用光子相干地調(diào)控物質(zhì)的量子態(tài),其衍生和嫁接技術(shù)帶來許多凝聚態(tài)物理實驗技術(shù)的變革等等。然而,受制于激發(fā)波長的限制(可見-近紅外),超快光譜在空間分辨上受到了定的制約,在對些微納尺寸結(jié)構(gòu)的材料研究中,諸如維半導(dǎo)體納米線,二維拓撲材料、納米相變材料等,無法精準地進行有效的超快光譜分析。
Neaspec公司用十數(shù)年在近場及納米紅外域的技術(shù)積累,開發(fā)出了全新的納米空間分辨超快光譜和成像系統(tǒng),其pump激發(fā)光可兼容可見到近紅外的多組激光器,probe探測光可選紅外(650-2200 cm-1)或太赫茲(0.5-2 T)波段,實現(xiàn)了在超高空間分辨(20 nm)和超高時間分辨(50 fs)上對被測物質(zhì)的同時表征。
應(yīng)用域
→ 二維材料 → 半導(dǎo)體 → 納米線/納米顆粒 | → 等離激元 → 高分子/生物材料 → 礦物質(zhì) ...... |
設(shè)備點和參數(shù):
→ 超高空間分辨和時間分辨同時實現(xiàn);
→ 20-50 nm空間分辨率;
→ 根據(jù)pump光源時間分辨可達50 fs;
→ probe光譜可選紅外(650-2200 cm-1)或太赫茲(0.5-2 T)
技術(shù)原理:
測試數(shù)據(jù)
■ 納米紅外超快光譜
分辨率為10nm的InAs納米線紅外成像,并結(jié)合時間分辨超快光譜分析載流子衰減層的形成過程
參考文獻:M. Eisele et al., Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution, Nature Phot. (2014) 8, 841.
穩(wěn)態(tài)開關(guān)靈敏性:容易發(fā)生相變的區(qū)域,光誘導(dǎo)散射響應(yīng)較大
參考文獻:M. A. Huber et al., Ultrafast mid-infrared nanoscopy of strained vanadium dioxide nanobeams, Nano Lett. 2016, 16, 1421.
參考文獻:G. X. Ni et al., Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene, Nature Phot. (2016) 10, 244.
參考文獻:Mrejen et al., Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow- gap semiconductor, Sci. Adv. (2019), 5, 9618.
■ 范德華材料 WSe2 中的超快研究
參考文獻:Mrejen et al., Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging, Sci. Adv. (2019), 5, 9618.
■ 黑磷中的近紅外超快激發(fā)
黑磷的high-contrast interband性質(zhì)使其具有半導(dǎo)體性質(zhì),在光誘導(dǎo)重組過程中表面激發(fā)的電子空隙對(electron-hole pairs)∼50fs并在5ps內(nèi)消失
參考文獻:M. A. Huber et al.,Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures, Nat. Nanotechnology. (2016), 5, 9618.
■ 多層石墨烯中等離子效應(yīng)衰減效應(yīng)
| |
參考文獻:M. Wagner et al., Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump−Probe Nanoscopy, Nano Lett. 2014, 14, 894.
發(fā)表文章:
neaspec中國用戶發(fā)表文章超80篇,其中36篇影響因子>10。
部分文章列表:
● M. B. Lundeberg et al., Science 2017 AOP.
● F. J. Alfaro-Mozaz et al., Nat. Commun. 2017, 8, 15624.
● P. Alonso-Gonzales et al., Nat. Nanotechnol. 2017, 12, 31.
● M. A. Huber et al., Nat. Nanotechnol. 2017, 12, 207.
● P. Li et al., Nano Lett. 2017, 17, 228.
● T. Low et al., Nat. Mater. 2017, 16, 182.
● D. Basov et al., Nat. Nanotechnol. 2017, 12, 187.
● M. B. Lundberg et al., Nat. Mater. 2017, 16, 204.
● D. Basov et al., Science 2016, 354, 1992.
● Z. Fei et al., Nano Lett. 2016, 16, 7842.
● A. Y. Nikitin et al., Nat. Photonics 2016, 10, 239.
● G. X. Ni et al., Nat. Photonics 2016, 10, 244.
● A. Woessner et al., Nat. Commun. 2016, 7, 10783.
● Z. Fei et al., Nano Lett. 2015, 15, 8271.
● G. X. Ni et al., Nat. Mater. 2015, 14, 1217.
● E. Yoxall et al., Nat. Photonics 2015, 9, 674.
● Z. Fei et al., Nano Lett. 2015, 15, 4973.
● M. D. Goldflam et al., Nano Lett. 2015, 15, 4859.
● P. Li et al., Nat. Commun. 2015, 5, 7507.
● S. Dai et al., Nat. Nanotechnol. 2015, 10, 682.
● S. Dai et al., Nat. Commun. 2015, 6, 6963.
● A. Woessner et al., Nat. Mater. 2014, 14, 421.
● P. Alonso-González et al.,Science 2014, 344, 1369.
● S. Dai et al., Science 2014, 343, 1125.
● P. Li et al., Nano Lett. 2014, 14, 4400.
● A. Y. Nikitin et al., Nano Lett. 2014, 14, 2896.
● M. Wagner et al., Nano Lett. 2014, 14, 894.
● M. Schnell et al., Nat. Commun. 2013, 5, 3499.
● J. Chen et al., Nano Lett. 2013, 13, 6210.
● Z. Fei et al., Nat. Nanotechnol. 2012, 8, 821.
● J. Chen et al., Nature 2012, 487, 77.
● Z. Fei et al., Nature 2012, 487, 82.