產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國(guó)布魯克海文儀器公司>技術(shù)文章>測(cè)量應(yīng)用案例-20191109

技術(shù)文章

測(cè)量應(yīng)用案例-20191109

閱讀:164          發(fā)布時(shí)間:2019-11-22

文獻(xiàn)名:Enhanced adsorption of arsenate by spinel zinc ferrite nano particles: Effect of zinc content and site occupation 

 

作者Can Wu12, Yunyun Xu12, Si Xu12, Jingwei Tu12, Chen Tian12, Zhang Lin12 

1School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangdong 510006, China

2Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangdong 510006, China

 

摘要:In this work, zinc ferrite spinel with different zinc contents (ZnxFe3-xO4) was synthesized by a hydrothermal method and used for removing As(V) in aqueous solution. X-ray diffraction (XRD) results indicated that in the crystal structure of ZnxFe3-xO4, the zinc atoms tended to occupy the octahedral sites for x?<?0.6 and diffused into the tetrahedral sites gradually with x?>?0.6. The size of ZnxFe3-xO4 crystallites increased with the increasing zinc content. Batch adsorption experiments showed that the adsorption isotherms could be well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second-order kinetic model. Zinc ferrite exhibited the highest adsorption capacity towards As(V) when x?=?0.6. Study of the mechanism indicated that doping with zinc increased the number of surface hydroxyl groups on ferrite spinel, and thus enhanced the adsorption capacity when x?=?0.6. This work revealed the effects of doping site and content of metal atoms on the adsorption ability of ferrite spinel towards As(V).

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 意見反饋 在線交流

掃一掃訪問(wèn)手機(jī)商鋪
010-62081908
在線留言