前 言
大腦復(fù)雜的細(xì)胞組成和特定的結(jié)構(gòu),使得體外建模難度極大。近年來大腦類器官概括了大腦發(fā)育的許多關(guān)鍵特征,激發(fā)全-球神經(jīng)學(xué)領(lǐng)域相關(guān)科研人員的興趣,研究成果不斷的發(fā)表于高分期刊,將腦類器官用于各種生理和病理研究。細(xì)胞因子作為類器官培養(yǎng)基中的添加試劑,可以引導(dǎo)細(xì)胞按特定器官譜系進(jìn)行分化。為助力腦類器官的培養(yǎng)與分化,義翹神州可提供人EGF、FGF2、NOG、BMP4等一系列腦類器官培養(yǎng)相關(guān)產(chǎn)品。
01 腦類器官研究新進(jìn)展
目前大多數(shù)腦部模型主要是人類死后腦組織、非人靈長類動(dòng)物組織或者體外2D細(xì)胞。由于資源限制和動(dòng)物模型的物種差異性等原因,使腦類器官成為潛在研究腦部生理和病理的模型。腦類器官主要源自胚胎干細(xì)胞(ESC)或者誘導(dǎo)性多能干細(xì)胞(iPSC)。對于體外神經(jīng)生物學(xué)和神經(jīng)發(fā)育障礙的疾病的研究,也會(huì)用到不同部位的腦類器官,比如前腦、中腦、海馬腦類器官等。目前使用腦類器官模型涉及到阿爾茨海默癥、帕金森病、自閉癥、精神分裂等,甚至包括漸凍癥、結(jié)節(jié)性硬化癥等罕見病。
體外神經(jīng)生物學(xué)和神經(jīng)發(fā)育障礙疾病模型的腦類器官 | |
Type of organoid | Disease modeled/potential application |
Cerebral/early brain organoids | Genetically caused microcephaly Zika virus mediated microcephaly Miller–Dieker syndrome |
Midbrain organoids | Potential to model Parkinson's disease |
Hypothalamus organoids | Potential to model hormonal and metabolic disorders including Prader–Willi syndrome |
Adenohypophysis organoids | Potential to model pituitary dysfunction |
Hippocampus organoids | Potential to model cognitive dysfunctions due to Alzheimer's disease |
Cerebellum organoids | Potential to model SCA and Dandy–Walker syndrome |
Dorsaltelencephalon organoids | ASD |
Forebrain assembloids | Timothy syndrome |
(源自:doi.org/10.1002/bies.201900011)
02細(xì)胞因子在腦類器官中的應(yīng)用
細(xì)胞因子在類器官培養(yǎng)過程中發(fā)揮重要作用。在多能干細(xì)胞(PSC)培養(yǎng)中加入了FGF2構(gòu)建3D腦類器官模型。對于不同部位的腦類器官的培養(yǎng),會(huì)加入不同的細(xì)胞因子,比如對于用于研究脊髓小腦共濟(jì)失調(diào)疾病的小腦類器官培養(yǎng)中,會(huì)加入FGF2、FGF19、SDF1等細(xì)胞因子。
用于生成特異性腦類器官的因子摘要 | |
Type of organoid | Cultured with |
Midbrain organoids | Wnt activators and SMAD inhibitors |
Hypothalamus organoids | Inhibitors that blocks TGF‐β pathways BMP-4 ligand and Wnt agonists |
Adenohypophysis organoids | DAPT, SAG, BIO, BMP4, dorsomorphin, Wnt4, Wnt5, FGF8, Nodal, iWP2 |
Hippocampus organoids | Wnt inhibitor IWR1e, TGF‐β inhibitor SB431542, 10% FBS, GSK3 inhibitor CHIR99021, BMP4 |
Cerebellum organoids | SB431542, FGF2, FGF19, SDF1 |
Dorsaltelencephalon organoids | Noggin, FGF2, rhDKK1, EGF, ascorbic acid, BDNF, GDNF, cAMP |
Dorsaltelencephalon organoids | Dorsomorphin, SB431542, FGF2, EGF Subpallium: IWP2, SHH agonist SAG, BDNF, NT3, allopregnalone, retinoic acid Pallium: BDNF, NT3 |
Photosensitive organoids | BDNF
|
Retinal organoids | IWR1e, Matrigel, 10% FBS, SAG, CHIR99021, retinoic acid |
Hypothalamus organoids | SMAD, BMP, Nodal and activin signaling pathway inhibitors |
Cerebellar plate neuroepithelium | FGF2,4,8, SAG, retinoic acid, BDNF, GDNF, NT3 |
(源自:doi.org/10.1002/bies.201900011)
?義翹神州細(xì)胞因子產(chǎn)品數(shù)據(jù)
Human FGF2 Protein, Cat: GMP-10014-HNAE
高純度:
≥ 95 % as determined by SDS-PAGE.
結(jié)合活性
Cell proliferation assay using Balb/C 3T3 mouse embryonic fibroblasts. The specific activity is >1,000 IU/μg.
Human Noggin Protein, Cat: 10267-HNAH
高純度:
≥95% as determined by SDS-PAGE. ≥95% as determined by SEC-HPLC.
高批間一致性
Inhibit BMP4-induced alkaline phosphatase production by MC3T3E1 mouse preosteoblast cells.
腦類器官培養(yǎng)相關(guān)的細(xì)胞因子 | |||
貨號(hào) | 靶點(diǎn) | 內(nèi)毒素 | 純度及活性 |
10605-HNAE
| EGF | <5 EU/mg | ≥95%☆,Active |
GMP-10605-HNAE
| EGF | <5 EU/mg | ≥95%☆,Active |
GMP-10014-HNAE
| FGF2 | <10 EU/mg | ≥95%,Active |
10609-HNAE2
| BMP4 | <1 EU/mg | ≥95%,Active |
10267-HNAH
| NOG | <10 EU/mg | ≥95%☆,Active |
☆:SDS-PAGE & SEC-HPLC
【參考文獻(xiàn)】
1. Antoine Verger et al. FDA Approval of Lecanemab: The Real Start of Widespread Amyloid PET Use? — The EANM Neuroimaging Committee Perspective. European Journal of Nuclear Medicine and Molecular Imaging, 2023. doi.org/10.1007/s00259-023-06177-5.
2. Yujung Chang et al. Modelling Neurodegenerative Diseases with 3D Brain Organoids. Biological Reviews, 2020. doi.org/10.1111/brv.12626.
3. Jihoon Kim, Bon-Kyoung Koo, and Juergen A. Knoblich, Human Organoids: Model Systems for Human Biology and Medicine, Nature Reviews Molecular Cell Biology, 2020. doi.org/10.1038/s41580-020-0259-3.
4. Guini Song et al. The Application of Brain Organoid Technology in Stroke Research: Challenges and Prospects. Frontiers in Cellular Neuroscience, 2021. frontiersin.org/articles/10.3389/fncel.2021.646921.
5. Jay Gopalakrishnan. The Emergence of Stem Cell-Based Brain Organoids: Trends and Challenges. BioEssays, 2019. doi.org/10.1002/bies.201900011.
6. Madeline A. Lancaster and Juergen A. Knoblich. Generation of Cerebral Organoids from Human Pluripotent Stem Cells. Nature Protocols, 2014. doi.org/10.1038/nprot.2014.158.
7. Sebastian, R., et al. Schizophrenia-associated NRXN1 deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids. Nat Commun, 2023. doi.org/10.1038/s41467-023-39420-6
8. Jimena Andersen, et al. Generation of Functional Human 3D Cortico-Motor Assembloids. Cell, 2020, doi:10.1016/j.cell.2020.11.017.
9. Yueqi Wang, et al. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nature Communications, 2022. doi.org/10.1038/s41467-022-33364-z
10. Fleck, J.S., et al. Inferring and perturbing cell fate regulomes in human brain organoids. Nature, 2022. doi.org/10.1038/s41586-022-05279-8
11. Oliver L. Eichmüller, et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science, 2022. Doi: 10.1126/science.abf5546
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。