邁可諾技術(shù)有限公司
主營產(chǎn)品: 美國Laurell勻膠機(jī),WS1000濕法刻蝕機(jī),Cargille光學(xué)凝膠,EDC-650顯影機(jī),NOVASCAN紫外臭氧清洗機(jī) |
聯(lián)系電話
邁可諾技術(shù)有限公司
主營產(chǎn)品: 美國Laurell勻膠機(jī),WS1000濕法刻蝕機(jī),Cargille光學(xué)凝膠,EDC-650顯影機(jī),NOVASCAN紫外臭氧清洗機(jī) |
聯(lián)系電話
2024-12-26 閱讀(96)
氮化硼封裝對2D半導(dǎo)體層
等離子體處理的影響(下)
結(jié)果和討論
在樣品制備、器件制造和后處理過程中,2D材料或異質(zhì)結(jié)構(gòu)可能會遇到幾種形式的高能輻射源。使用的輻射源包括電子、離子(氬、氦和氙)和光子(激光、紫外線)通量。然而,離子束和紫外光分別是蝕刻和光刻工藝中最CY的。在這里,我們研究了h-BN,MoS2及其異質(zhì)結(jié)構(gòu)在Ar+離子等離子體下曝光。氬離子等離子體是最CY的,因?yàn)闅逵捎谄涔逃械亩栊圆粫c樣品形成化學(xué)鍵。氬也是一種足夠重的離子,可以提供足夠的動能以在合理的加速電壓下蝕刻樣品。
圖1顯示了本研究中使用的物理堆疊2D異質(zhì)結(jié)構(gòu)樣品的示意圖。h-BN和MoS2薄片用透明膠帶從主體上剝離。它們隨后被轉(zhuǎn)移到氧化硅晶片或干燥的PDMS印模上。轉(zhuǎn)移到STEM加熱平臺上的異質(zhì)結(jié)構(gòu)和樣品都是通過粘彈性PDMS印模使用直接轉(zhuǎn)移產(chǎn)生的。
圖一 (a)代表MoS?/h-BN部分重疊的范德華異質(zhì)結(jié)構(gòu)在Ar+等離子體暴露前后的示意圖。(b)異質(zhì)結(jié)構(gòu)的橫截面示意圖。(c)相應(yīng)的STEM圖像顯示了15?秒暴露在等離子體中。
拉曼光譜用于對h-BN屏蔽和未屏蔽的MoS2提供作為等離子體暴露的函數(shù)的缺陷形成的全面測量 (圖2). 圖2(a)展示了h-BN堆疊異質(zhì)結(jié)構(gòu)的光學(xué)顯微鏡(OM)圖像(圈出)。也有純h-BN和純MoS2的區(qū)域相鄰(箭頭)。給出了相同異質(zhì)結(jié)構(gòu)(h-BN/MoS2)的高度圖像和相應(yīng)的h-BN厚度分布在圖2(b)。拉曼光譜是Ar+的函數(shù)標(biāo)記的未屏蔽和屏蔽MoS2的曝光時(shí)間區(qū)域顯示在圖2(c)。在226厘米處有明顯的峰?1[標(biāo)記為LA (M)]在先前的工作中已經(jīng)與由布里昂區(qū)邊緣的聲子散射引起的缺陷的出現(xiàn)相關(guān)聯(lián)。34–36同樣,E2g和一個模式強(qiáng)度隨著等離子體暴露時(shí)間的增加而降低,這證實(shí)了晶格隨著暴露時(shí)間的增加而受到越來越大的損傷。來自h-BN層的控制數(shù)據(jù)在補(bǔ)充材料中呈現(xiàn)為圖S1和S2,49并且OM圖像中光學(xué)對比度的變化呈現(xiàn)在補(bǔ)充材料的圖S3中。49原始MoS2作為單層具有非常小的LA (M)拉曼模式,并且對于幾層MoS2是可以忽略的這種LA模式很可能源于剝離和轉(zhuǎn)移過程中產(chǎn)生的缺陷。兩分鐘半的等離子體暴露導(dǎo)致顯著增強(qiáng)的LA (M)信號,表明形成了大量缺陷。在暴露于等離子體5分鐘后,LA (M)拉曼模式的強(qiáng)度與晶格A的強(qiáng)度具有相同的數(shù)量級(M)–LA(M)聲子模式,表明顯著的損傷累積。
圖二 屏蔽與非屏蔽單層MoS?的拉曼和光致發(fā)光特性對于不同的Ar+等離子暴露時(shí)間。(a)幾層MoS?的光學(xué)顯微鏡圖像2被幾層h-BN屏蔽,以及相應(yīng)的(b)異質(zhì)結(jié)構(gòu)區(qū)域的AFM高度圖像,以及原始形式的h-BN層的高度輪廓(11.2 nm)。(c)未屏蔽和屏蔽單層MoS?在不同等離子體暴露下的拉曼光譜。(d)單層MoS?的光致發(fā)光響應(yīng)對相同的h-BN屏蔽單層MoS?進(jìn)行分析光學(xué)顯微照片中顯示的區(qū)域和X的相應(yīng)(e) PL峰0和XB強(qiáng)度隨等離子體暴露的增加而變化。
我們還研究了Ar+未屏蔽MoS2的不同層厚在較短時(shí)間間隔內(nèi)(在1米的持續(xù)時(shí)間內(nèi),使用20秒步長)的等離子體暴露效應(yīng)并將這些結(jié)果報(bào)告在補(bǔ)充材料的圖S4中。49我們發(fā)現(xiàn)缺陷形成發(fā)生在Ar+上通過拉曼光譜可測量的水平對于未受保護(hù)的單層MoS2,時(shí)間尺度短至30秒的等離子體暴露樣本。相比之下,Ar+2.5分鐘和5分鐘的等離子體暴露時(shí)間顯示了MoS2區(qū)域的LA (M)拉曼信號的不太顯著的上升在幾層h-BN下屏蔽的薄片,如圖S5補(bǔ)充材料中所示。49雖然拉曼光譜是確定晶格損傷的可靠方法,但是來自2D材料的拉曼信號本質(zhì)上是低效的。對于高質(zhì)量的直接帶隙半導(dǎo)體來說,光致發(fā)光是對晶體質(zhì)量和缺陷密度的更靈敏的測量。與晶體順序的最小偏差都會導(dǎo)致非輻射復(fù)合,從而降低初級PL效率。37偏離結(jié)晶順序還會引入陷阱態(tài),從而導(dǎo)致光致發(fā)光從最初的光致發(fā)光峰值位置紅移。37,38
我們記錄了屏蔽和未屏蔽單層MoS2暴露于等離子體后的光致發(fā)光響應(yīng). 圖2(a)給出了我們從中獲得PL譜的異質(zhì)結(jié)構(gòu)樣品的OM圖像。區(qū)域1具有MoS2單層其被屏蔽在h-BN薄片下(11.2 nm),區(qū)域2是未屏蔽的單層MoS2。損益數(shù)據(jù)如下所示圖2(d)和圖2(e)。在652納米(1.9 eV)的主峰是由X0引起的激子發(fā)射,39并且已知在740 nm處的峰(1.67 eV)是缺陷束縛激子峰。40,41先前在MoS2文獻(xiàn)中已經(jīng)觀察到類似的低入射光強(qiáng)度的PL光譜.42–44輻照前未屏蔽MoS2區(qū)域的PL強(qiáng)度(“原始")如圖中的紅色所示圖2(d)。未屏蔽MoS2薄片的PL強(qiáng)度相對弱于原始樣品的屏蔽區(qū)域。這是與異質(zhì)結(jié)構(gòu)的形成相關(guān)的光學(xué)效應(yīng):h-BN具有較高的折射率,而SiO2晶片具有較低的折射率。因此,較高折射率的介質(zhì)能夠增加光提取。隨著等離子體暴露的增加,我們看到兩種效應(yīng),我們在圖中進(jìn)行了總結(jié)圖2(e)。首先,隨著Ar+等離子體暴露量的增加,與缺陷束縛激子發(fā)射(XB)相關(guān)的峰值增加,清楚地表明隨著入射的高能Ar+離子穿透h-BN屏蔽,層中缺陷含量增加。其次,初級中性激子(X0)峰值強(qiáng)度同時(shí)相關(guān)降低。有趣的是,h-BN/MoS2異質(zhì)結(jié)構(gòu)顯示出MoS2 XB強(qiáng)度的突然增加,為3.5?分鐘和更長的等離子體暴露時(shí)間。這些數(shù)據(jù)表明,h-BN層在異質(zhì)結(jié)構(gòu)中是一個有效的屏蔽層,僅在等離子體暴露的特定閾值下。
光學(xué)和振動光譜是追蹤損傷累積總體趨勢的有效方法。然而,它們沒有提供關(guān)于單個缺陷累積的原子級信息。為了補(bǔ)充這些光譜,我們使用像差校正的高角度環(huán)形暗場(HAADF)掃描透射電子顯微鏡(STEM)成像進(jìn)行了廣泛的表征。薄片樣品使用圖1中描述的相同方法制備,并轉(zhuǎn)移到包含分離的100?μm直徑的孔。這允許用Ar+等離子體照射異質(zhì)結(jié)構(gòu),而不會損壞下面的SiNx膜。第二節(jié)描述了用于分析所有STEM樣品的等離子體輻照系統(tǒng)的細(xì)節(jié)。
原始和不同等離子體暴露的MoS2區(qū)域的基本MoS2結(jié)構(gòu)模型和低放大率以及原子分辨的HAADF-STEM成像如補(bǔ)充材料中的圖S6和S7所示。49HAADF-STEM 成像是在連續(xù)等離子體暴露后以不同的時(shí)間間隔(5、10 和 15 秒)進(jìn)行的。這導(dǎo)致了四種樣品條件:“原始"(0秒曝光)和分別為5、15和30秒的累積曝光,如圖3所示。我們比較了同一樣品的兩個不同區(qū)域的缺陷演變分析 ,h-BN 屏蔽 MoS2 異質(zhì)結(jié)構(gòu)與未屏蔽(裸露)MoS2 區(qū)域的比較。值得注意的是,盡管MoS2 上 h-BN 的垂直范德華異質(zhì)結(jié)構(gòu)在圖中以透射方式成像,如圖 3(a)–3(d) 所示,幾乎所有圖像信號都來自 MoS2 層。 這有兩個原因。首先,像差校正的STEM圖像具有非常小的景深,并且我們保持聚焦在MoS2層上。45其次,HAADF圖像中的強(qiáng)度與Z成比例1.65,45并且Mo和S都明顯比B和n重。因此,幾乎所有構(gòu)成圖3中圖像的信號都來自MoS2層。盡管如此,快速傅立葉變換(FFT)衍射圖可以檢測到 MoS2和 h-BN 晶格圖像中的周期性,并且表明它們之間存在 12.2° 的扭轉(zhuǎn)角。圖3(a)–圖3(c)表明,h-BN 屏蔽的 MoS2 異質(zhì)結(jié)構(gòu)在累積 15 秒的等離子體暴露之前,形成的缺陷可以忽略不計(jì)。然而,在等離子體暴露累積 30 秒后,h-BN/MoS2 異質(zhì)結(jié)構(gòu)顯示出可見的晶格損傷(圓圈)。
圖三 原始樣品和暴露于 Ar+ 等離子體的樣品的像差校正 HAADF-STEM 圖像。(a)-(d)h-BN/少層 MoS? 異質(zhì)結(jié)構(gòu)區(qū)域的圖像顯示,在 15 秒(a)-(c)之前產(chǎn)生的缺陷/損傷極小,30 秒(d)時(shí)出現(xiàn)明顯損傷。與此相反,(e)-(h) 未屏蔽 MoS? 的 STEM 成像顯示,從等離子體暴露 5 秒開始(f)就出現(xiàn)了嚴(yán)重的晶格損傷,而在 Ar+ 等離子體暴露 30 秒后,雙層區(qū)域幾乎發(fā)生了非晶化(h)。插圖[(a)和(e)]是 FFT 衍射圖,分別顯示了 h-BN/MoS? 異質(zhì)結(jié)構(gòu)與裸露非屏蔽 MoS? 的存在;所有圖像的比例相同,(a)中顯示了具有代表性的比例條。
相比之下,裸露的 MoS2 僅暴露 5 秒后就顯示出明顯的晶格損傷特征[圖 3(f)]。不同 的HAADF-STEM 圖像(從原始圖像到不同的等離子曝光時(shí)間)的對比度在數(shù)量上不具有可比性,因?yàn)槊總€單獨(dú)的圖像在圖像采集期間都通過圖像采集軟件 (gatan gms) 進(jìn)行自我歸一化至其大強(qiáng)度。圖 3 中圖像的灰度直方圖見補(bǔ)充材料中的圖 S8中。49 每個直方圖都已標(biāo)準(zhǔn)化為各自的大圖像強(qiáng)度,并根據(jù)平均強(qiáng)度和標(biāo)準(zhǔn)偏差縮放為公共分布。所有圖像處理和歸一化均使用“Sci-kit"以及“Fiji"來讀取和處理圖像。46,47 僅暴露 5 秒后,MoS2 薄片的雙層和幾層部分中的等離子體就會引起晶格損傷。額外的等離子體暴露會導(dǎo)致越來越嚴(yán)重的晶格損傷[圖 3(f)–3(h)],導(dǎo)致在等離子體暴露 30 秒后雙層區(qū)域幾乎無定形化[圖 3(h)]。這些圖像還表明,隨著暴露程度的增加,空間局部區(qū)域的損害也會加劇。 換句話說,損傷會在早期引入的缺陷處累積,而不是通過持續(xù)的再成核??偟貋碚f,由等離子體產(chǎn)生的缺陷區(qū)域被從等離子體室轉(zhuǎn)移到 TEM 柱期間積累的周圍大氣物質(zhì)鈍化。這種化學(xué)鈍化使這些區(qū)域變得穩(wěn)定,隨后的等離子體暴露會導(dǎo)致這些不協(xié)調(diào)位置的損壞增加。補(bǔ)充材料中的圖 S6 顯示了異質(zhì)結(jié)構(gòu)和裸樣品區(qū)域的其他低放大倍數(shù) STEM 圖像,49 另一組原子級 STEM 圖像顯示了等離子體暴露 30 秒后缺陷區(qū)域的聚集斑塊。 圖S9中的補(bǔ)充材料。我們在等離子體暴露 15 秒后進(jìn)行了電子能量損失光譜(EELS)測量(補(bǔ)充材料中的圖 S10)。49 原子分辨的 EELS 數(shù)據(jù)顯示存在吸附氧,而吸附氧存在于有缺陷的二維 MoS2基底平面中。由于 MoS2 層的厚度(4-5 nm)與樣品的總厚度(包括下面 20 nm 的 SiNx 膜和上面覆蓋 MoS2 的 h-BN 層(10 nm))相比非常薄,因此 Mo 和 S 信號較弱。我們還研究了異質(zhì)結(jié)構(gòu)(h-BN/MoS2)的 EELS,該異質(zhì)結(jié)構(gòu)經(jīng)歷了長達(dá) 20 秒的連續(xù)等離子體暴露。我們首先獲取了原始狀態(tài)下氧的磁芯損耗 EELS 光譜,然后在同一區(qū)域?qū)ξ雌帘魏推帘螀^(qū)域的 MoS2 薄片進(jìn)行 20 秒等離子曝光,如補(bǔ)充材料中的圖 S11 所示49。在將樣品從等離子處理系統(tǒng)轉(zhuǎn)移到 TEM 真空柱的過程中,我們的樣品暴露在環(huán)境空氣中最多 10 分鐘。這一觀察結(jié)果支持了我們的假設(shè),即在進(jìn)出顯微鏡的過程中,即環(huán)境暴露可以穩(wěn)定進(jìn)出顯微鏡期間的缺陷。
如圖 4 所示,我們觀察到未屏蔽的 MoS2 基底面出現(xiàn)了大面積的損壞和蝕刻。這與連續(xù)等離子體曝光結(jié)合環(huán)境空氣曝光形成了鮮明對比[參見上文,圖 3(g)],后者的晶格損傷更為均勻。如圖 4(a)和圖 4(b)所示,我們可以看到,增加等離子體暴露總量會在 h-BN 和非屏蔽 MoS2 層中產(chǎn)生大量缺陷。此外,這里產(chǎn)生的缺陷要大得多,而且不是單個的點(diǎn)缺陷,而是直徑為 3-5 nm的空洞。這表明,如果沒有氧氣在轉(zhuǎn)移過程中提供的穩(wěn)定作用,缺陷就會在輻照過程中加速積累。在單個點(diǎn)缺陷成核后,配位不足的原子很容易從其晶格位點(diǎn)上脫落,再加上持續(xù)等離子輻照過程中的擴(kuò)展遷移,可能會導(dǎo)致大量空洞的形成。
圖四 Ar+ 等離子體照射 15 秒后樣品區(qū)域的特征。(a) 僅包含 h-BN 層的區(qū)域的低倍 HAADF-STEM 成像。圈出的是較暗的損傷斑塊。(b) 樣品區(qū)域的原子尺度 HAADF-STEM 圖像,該區(qū)域同時(shí)包含 h-BN 屏蔽和非屏蔽 MoS?。黃色標(biāo)記區(qū)域?qū)?yīng)的是有 h-BN 屏蔽的 MoS? 區(qū)域(左側(cè)),而圖像右側(cè)部分則是無屏蔽區(qū)域(c)。h-BN 屏蔽 MoS? 區(qū)域的原子尺度圖像顯示沒有強(qiáng)烈損傷。(d) 未屏蔽 MoS? 區(qū)域的原子分辨 STEM 圖像(來自 b 中所示的粉色虛線矩形框)顯示出嚴(yán)重的損壞,并附有(插圖)FFT 曲線。
從圖 4(b)和圖 4(c)中可以看出,h-BN/MoS2 異質(zhì)結(jié)構(gòu)仍然保持著很好的完整性。這與圖 2 的 PL 數(shù)據(jù)所示的少層 h-BN 成為有效屏蔽層的能力是一致的。補(bǔ)充材料中的圖 S12 展示了 h-BN/MoS2 異質(zhì)結(jié)構(gòu)不同部分的原子力顯微鏡高度圖像和相應(yīng)的厚度剖面圖。此外,我們還使用拉曼光譜對同一薄片進(jìn)行了分析,結(jié)果表明,在未屏蔽 MoS2 的情況下,缺陷模式清晰可見(補(bǔ)充材料中的圖 S13)。49 隨后,補(bǔ)充材料中的圖 S14 展示了兩種不同樣品配置--未屏蔽和屏蔽 MoS2--的同一區(qū)域在連續(xù)等離子體暴露 20 秒后的 STEM 成像。我們還單獨(dú)研究了異質(zhì)結(jié)構(gòu)中用作屏蔽的 h-BN 層內(nèi)的缺陷演化和相應(yīng)的晶格損傷。不過,空洞是可見的,而且很明顯。我們還觀察到 h-BN 在連續(xù)等離子暴露時(shí)也會形成類似的空洞和損傷斑塊,詳情請參見補(bǔ)充材料中的圖 S15-S1749。我們推測這些局部空隙是等離子體離子通過逐層刻蝕進(jìn)一步滲透的通道,最終到達(dá)底層,進(jìn)而造成 MoS2 的局部損壞(補(bǔ)充材料中的圖 S9)49。從 h-BN 層的原子力顯微鏡高度圖像(補(bǔ)充材料中的圖 S18)中可以很容易地看到缺陷斑塊和相應(yīng)空洞的產(chǎn)生。
概述和結(jié)論
我們研究了 Ar+ 等離子體誘導(dǎo)的缺陷產(chǎn)生和蝕刻在原子級薄范德華異質(zhì)結(jié)構(gòu) h-BN 和MoS2 中的動態(tài)過程。我們觀察到,h-BN 能有效地保護(hù)底層免受等離子體的破壞。原子尺度成像表明,等離子體誘導(dǎo)的晶格損傷對于未屏蔽的 MoS2 來說是瞬時(shí)的,而屏蔽的 MoS2 則受到 h-BN 的保護(hù),直到暴露到一定程度,而且損傷程度與暴露時(shí)間的函數(shù)關(guān)系取決于 h-BN 的厚度。我們得出的結(jié)論是,與連續(xù)暴露相比,連續(xù)等離子體暴露更具破壞性。這些結(jié)果表明,h-BN 封裝在等離子體處理過程中確實(shí)為下面的 MoS2 層提供了有限的保護(hù),但保護(hù)水平因一系列參數(shù)而異。
參考
34. A.?McCreary?et al, J. Mater. Res.?31, 931 (2016). PS//doi.org/10.1557/jmr.2016.47
35. Z.?Lin, B. R.?Carvalho, E.?Kahn, R.?Lv, R.?Rao, H.?Terrones, M. A.?Pimenta, and M.?Terrones, 2D Mater.?3, 022002 (2016). PS//doi.org/10.1088/2053-1583/3/2/022002
36. S.?Mignuzzi, A. J.?Pollard, N.?Bonini, B.?Brennan, I. S.?Gilmore, M. A.?Pimenta, D.?Richards, and D.?Roy, Phys. Rev. B?91, 195411 (2015).
PS//doi.org/10.1103/PhysRevB.91.195411
37. I.?Pelant and J.?Valenta, Luminescence Spectroscopy of Semiconductors (Oxford University, Oxford, 2012).
38. W.?Su, L.?Jin, X.?Qu, D.?Huo, and L.?Yang, Phys. Chem. Chem. Phys.?18, 14001 (2016). PS//doi.org/10.1039/C6CP00241B
39. P.?Kumar, J.?Biswas, J.?Pandey, K.?Thakar, A.?Soni, S.?Lodha, and V.?Balakrishnan, Adv. Mater. Interfaces?6, 1900962 (2019). PS//doi.org/10.1002/admi.201900962
40. S.?Tongay?et al, Sci. Rep.?3, 2657 (2013). PS//doi.org/10.1038/srep02657
41. T.?Verhagen, V. L. P.?Guerra, G.?Haider, M.?Kalbac, and J.?Vejpravova, Nanoscale?12, 3019 (2020). PS//doi.org/10.1039/C9NR07246B
42. D.?Wang?et al, Opt. Express?26, 27504 (2018). PS//doi.org/10.1364/OE.26.027504
43. A.?Splendiani, L.?Sun, Y.?Zhang, T.?Li, J.?Kim, C.-Y.?Chim, G.?Galli, and F.?Wang, Nano Lett.?10, 1271 (2010). PS//doi.org/10.1021/nl903868w
44. D.?Kaplan, K.?Mills, J.?Lee, S.?Torrel, and V.?Swaminathan, J. Appl. Phys.?119, 214301 (2016). PS//doi.org/10.1063/1.4948662
45. S. J.?Pennycook and P. D.?Nellist, Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer Science & Business Media, New York, 2011).
46. S. J.?van der Walt, J.?Nunez-Iglesias, F.?Boulogne, J. D.?Warner, N.?Yager, E.?Gouillart, and T.?Yu, PeerJ?2, e453 (2014). PS//doi.org/10.7717/peerj.453
47. J.?Schindelin?et al, Nat. Methods?9, 676 (2012). PS//doi.org/10.1038/nmeth.2019
48. J.?Pet?, T.?Ollár, P.?Vancsó, Z. I.?Popov, G. Z.?Magda, G.?Dobrik, C.?Hwang, P. B.?Sorokin, and L.?Tapasztó, Nat. Chem.?10, 1246 (2018). PS//doi.org/10.1038/s41557-018-0136-2
49. See supplementary material at PS//doi.org/10.1116/6.0000874 for detailed and extra characterization of the used 2D layers utilizing optical microscopic images, scanning transmission electron microscope, Raman, as well as PL spectroscopy.