聯(lián)系電話
- 聯(lián)系人:
- 曹女士
- 電話:
- 400-6111-883
- 手機(jī):
- 售后:
- 4006-111-883
- 傳真:
- 86-21-34615995
- 地址:
- 上海市浦東新區(qū)天雄路166弄1號3樓
- 網(wǎng)址:
- www.yeasen.com
掃一掃訪問手機(jī)商鋪
巨噬細(xì)胞是體內(nèi)每個器官中都存在的細(xì)胞,存在于表皮、角膜和沒有血管的關(guān)節(jié)內(nèi)部,其體內(nèi)生物學(xué)研究的重要方法之一是巨噬細(xì)胞耗竭。清除巨噬細(xì)胞,可以全面了解巨噬細(xì)胞在病理?xiàng)l件下的功能。目前,巨噬細(xì)胞清除的主要方法包括構(gòu)建巨噬細(xì)胞缺失動物模型和使用藥物(氯膦酸鹽脂質(zhì)體)去除法,但是,構(gòu)建巨噬細(xì)胞缺失動物模型價(jià)格昂貴,周期長,因此,氯膦酸鹽脂質(zhì)體(Clodronate Liposomes)是目前最為成熟、方便、經(jīng)濟(jì)的一種巨噬細(xì)胞清除工具,可以有效的清除動物體內(nèi)包括肝臟,脾臟,肺部,血液等多個不同組織和部位中的巨噬細(xì)胞,也是目前使用泛的一種巨噬細(xì)胞清除的方法。
將氯膦酸鹽包裹進(jìn)磷脂體的水相中形成氯膦酸鹽脂質(zhì)體,氯膦酸鹽不能自由的通過脂質(zhì)體磷脂體雙分子層。注射到生物體內(nèi)后,氯膦酸鹽脂質(zhì)體會被巨噬細(xì)胞吞噬,在巨噬細(xì)胞內(nèi)的溶酶體磷酸酶的作用下,溶解在脂質(zhì)體內(nèi)的氯膦酸鹽會被逐步釋放出來并在細(xì)胞內(nèi)積累,當(dāng)達(dá)到一定濃度時(shí),巨噬細(xì)胞將會受到不可逆損傷,誘發(fā)細(xì)胞凋亡。死亡細(xì)胞內(nèi)的氯膦酸鹽會被釋放到細(xì)胞外,隨尿液排出體外。
不同種類的小鼠給藥劑量略有差異,可根據(jù)以下表格中的給藥劑量摸索。
表1.C57小鼠巨噬細(xì)胞清除給藥方法
巨噬細(xì)胞有很多種亞型,不同的亞型部分標(biāo)志物不同(見表2),另外,不同組織和器官的巨噬細(xì)胞的標(biāo)志物也會有差異(見表3)。一般在做巨噬細(xì)胞清除實(shí)驗(yàn)前,應(yīng)先查找相關(guān)文獻(xiàn),找出具體清除部位的巨噬細(xì)胞的表面標(biāo)志物,選擇最佳標(biāo)志物進(jìn)行流式實(shí)驗(yàn)。
表2.不同亞型的巨噬細(xì)胞標(biāo)志物
參考文獻(xiàn):Klopfleisch R. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers. Acta Biomater. 2016 Oct 1;43:3-13. doi: 10.1016/j.actbio.2016.07.003. Epub 2016 Jul 6. PMID: 27395828.
表3.不同組織中巨噬細(xì)胞的標(biāo)志物
小鼠品系:C57BL/6J小鼠
注射方式:腹腔注射
取樣部位:外周血
注射劑量:200 μl /只
抗體選擇:F4/80
檢測方法:巨噬細(xì)胞耗竭模型采用氯膦酸脂質(zhì)體,腹腔注射200μL每只小鼠,在注射氯鈉脂質(zhì)體后24小時(shí),通過流式細(xì)胞術(shù)檢測外周血巨噬細(xì)胞數(shù)量。
清除結(jié)果:
圖1.腹腔注射給藥后巨噬細(xì)胞減少
參考文獻(xiàn):Xiong X, Chen S, Shen J, et al. Cannabis suppresses antitumor immunity by inhibiting JAK/STAT signaling in T cells through CNR2. Signal Transduct Target Ther. 2022;7(1):99. Published 2022 Apr 6. doi:10.1038/s41392-022-00918-y(IF:18.187)
小鼠品系:雌性C57BL/6J小鼠
注射方式:腹腔注射
取樣部位:腹腔灌洗液
注射劑量:第0、3、6天分別給與15 mg/kg巨噬細(xì)胞清除劑
抗體選擇:CD11b,F(xiàn)4/80雙陽性
檢測方法:在第0、3、6天將氯膦酸脂質(zhì)體 (15 mg/kg)或懸浮在200 ml PBS中的空脂質(zhì)體腹腔注射到6周齡雌性C57BL/6J小鼠體內(nèi),以消耗巨噬細(xì)胞,并在最后一次脂質(zhì)體注射后的第3、6天將100萬BMDMs懸浮在100 ml PBS中靜脈注射重建巨噬細(xì)胞,然后通過流式細(xì)胞術(shù)分析小鼠腹腔灌洗液巨噬細(xì)胞的損耗和重構(gòu)。
清除結(jié)果:
圖2.注射脂質(zhì)體后鼠腹腔灌洗液及巨噬細(xì)胞重建的流式分析
參考文獻(xiàn):Zhang Z, Chen C, Yang F, et al. Itaconate is a lysosomal inducer that promotes antibacterial innate immunity [published online ahead of print, 2022 May 25. Mol Cell. 2022;S1097-2765(22)00443-9. doi:10.1016/j.molcel.2022.05.009 (IF:17.970)
小鼠品系:C57BL/6J
注射方式:靜脈注射
取樣部位:血液、乳腺
注射劑量:200 μl /只
抗體選擇:F4/80
清除方法:巨噬細(xì)胞耗竭模型采用氯膦酸脂質(zhì)體(0.15-0.2 mL/25 g),給與200μL每只小鼠,靜脈注射于哺乳期小鼠體內(nèi),消耗血液和乳腺內(nèi)巨噬細(xì)胞,在注射氯鈉脂質(zhì)體后24、48和72小時(shí),通過流式細(xì)胞術(shù)檢測乳腺巨噬細(xì)胞數(shù)量。
清除結(jié)果:
圖3.a)血液學(xué)自動分析儀檢測血液中單核細(xì)胞(血液中巨噬細(xì)胞的一種形式)比例的變化;b)流式細(xì)胞術(shù)檢測乳腺巨噬細(xì)胞比例變化
參考文獻(xiàn):Cai J, Peng J, Zang X, Feng J, Li R, Ren P, Zheng B, Wang J, Wang J, Yan M, Liu J, Deng R, Wang D. Mammary Leukocyte-Assisted Nanoparticle Transport Enhances Targeted Milk Trace Mineral Delivery. Adv Sci (Weinh). 2022 Sep;9(26):e2200841. doi: 10.1002/advs.202200841. Epub 2022 Jun 30. PMID: 35773238; PMCID: PMC9475556. (IF:17.521)
小鼠品系:C57BL/6
注射方式:腹腔注射
取樣部位:外周血
注射劑量:200 μl /只
抗體選擇:F4/80
檢測方法: 第3天腹腔注射氯磷酸脂質(zhì)體200 μL,去除巨噬細(xì)胞。用流式細(xì)胞術(shù)檢測巨噬細(xì)胞缺失效應(yīng)。
清除結(jié)果:
圖4.免疫細(xì)胞缺失流式分析
參考文獻(xiàn):Yu X, Long Y, Chen B, et al. PD-L1/TLR7 dual-targeting nanobody-drug conjugate mediates potent tumor regression via elevating tumor immunogenicity in a host-expressed PD-L1 bias-dependent way. J Immunother Cancer. 2022;10(10):e004590. doi:10.1136/jitc-2022-004590(IF:12.469)
產(chǎn)品簡介
產(chǎn)品組成:1 mL脂質(zhì)體體懸液(1.5-2μm)中所含的氯膦酸大約為5 mg,所用的磷酸鹽緩沖液為10 mM Na2HPO4,10 mM NaH2PO4,140 mM NaCl。
產(chǎn)品列表
部分參考文獻(xiàn)列表
[1] Liu Z, Gu Y, Chakarov S, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell. 2019;178(6):1509-1525.e19. doi:10.1016/j.cell.2019.08.009(IF:36.216)
[2] Xiong X, Chen S, Shen J, et al. Cannabis suppresses antitumor immunity by inhibiting JAK/STAT signaling in T cells through CNR2. Signal Transduct Target Ther. 2022;7(1):99. Published 2022 Apr 6. doi:10.1038/s41392-022-00918-y(IF:18.187)
[3] Zhang Z, Chen C, Yang F, et al. Itaconate is a lysosomal inducer that promotes antibacterial innate immunity [published online ahead of print, 2022 May 25]. Mol Cell. 2022;S1097-2765(22)00443-9. doi:10.1016/j.molcel.2022.05.009(IF:17.970)
[4] Cai J, Peng J, Zang X, et al. Mammary Leukocyte-Assisted Nanoparticle Transport Enhances Targeted Milk Trace Mineral Delivery [published online ahead of print, 2022 Jun 30]. Adv Sci (Weinh). 2022;e2200841. doi:10.1002/advs.202200841(IF:17.521)
[5] Jin H, Liu K, Tang J, et al. Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury. Nat Commun. 2021;12(1):2863. Published 2021 May 17. doi:10.1038/s41467-021-23197-7(IF:14.919)
[6] Sheng D, Ma W, Zhang R, et al. Ccl3 enhances docetaxel chemosensitivity in breast cancer by triggering proinflammatory macrophage polarization [published correction appears in J Immunother Cancer. 2022 Jun;10(6):]. J Immunother Cancer. 2022;10(5):e003793. doi:10.1136/jitc-2021-003793(IF:13.751)
[7] Yu X, Long Y, Chen B, et al. PD-L1/TLR7 dual-targeting nanobody-drug conjugate mediates potent tumor regression via elevating tumor immunogenicity in a host-expressed PD-L1 bias-dependent way. J Immunother Cancer. 2022;10(10):e004590. doi:10.1136/jitc-2022-004590(IF:12.469)
[8] Zhao L, Zhang H, Liu X, et al. TGR5 deficiency activates antitumor immunity in non-small cell lung cancer via restraining M2 macrophage polarization. Acta Pharm Sin B. 2022;12(2):787-800. doi:10.1016/j.apsb.2021.07.011(IF:11.614)
[9] Xia L, Zhang C, Lv N, et al. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages. Theranostics. 2022;12(6):2928-2947. Published 2022 Mar 21. doi:10.7150/thno.69533(IF:11.556)
[10] Zhang X, Hou L, Li F, et al. Piezo1-mediated mechanosensation in bone marrow macrophages promotes vascular niche regeneration after irradiation injury. Theranostics. 2022;12(4):1621-1638. Published 2022 Jan 16. doi:10.7150/thno.64963(IF:11.556)
[11] Xun J, Du L, Gao R, et al. Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B. Theranostics. 2021;11(14):6847-6859. Published 2021 May 3. doi:10.7150/thno.51864(IF:11.556)
[12] Wang H, Li L, Li Y, et al. Intravital imaging of interactions between iNKT and kupffer cells to clear free lipids during steatohepatitis. Theranostics. 2021;11(5):2149-2169. Published 2021 Jan 1. doi:10.7150/thno.51369(IF:11.556)
[13] Wu H, Yin X, Zhao X, et al. HDAC11 negatively regulates antifungal immunity by inhibiting Nos2 expression via binding with transcriptional repressor STAT3. Redox Biol. 2022;56:102461. doi:10.1016/j.redox.2022.102461(IF:10.787)
[14] Liu X, Fei H, Yang C, et al. Trophoblast-Derived Extracellular Vesicles Promote Preeclampsia by Regulating Macrophage Polarization. Hypertension. 2022;79(10):2274-2287. doi:10.1161/HYPERTENSIONAHA.122.19244(IF:9.897)
[15] Zuo L, Li J, Zhang X, et al. Aberrant mesenteric adipose extracellular matrix remodeling is involved in adipocyte dysfunction in Crohn's disease: The role of TLR-4-mediated macrophages [published online ahead of print, 2022 Jun 16]. J Crohns Colitis. 2022;jjac087. doi:10.1093/ecco-jcc/jjac087(IF:9.071)
[16] Huang C, Wang J, Liu H, et al. Ketone body β-hydroxybutyrate ameliorates colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway. BMC Med. 2022;20(1):148. Published 2022 Apr 15. doi:10.1186/s12916-022-02352-x(IF:8.775)
[17] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[18] Jiang P, Gao W, Ma T, et al. CD137 promotes bone metastasis of breast cancer by enhancing the migration and osteoclast differentiation of monocytes/macrophages. Theranostics. 2019;9(10):2950-2966. Published 2019 May 9. doi:10.7150/thno.29617(IF:8.063)
[19] Yang XL, Wang G, Xie JY, et al. The Intestinal Microbiome Primes Host Innate Immunity against Enteric Virus Systemic Infection through Type I Interferon. mBio. 2021;12(3):e00366-21. Published 2021 May 11. doi:10.1128/mBio.00366-21(IF:7.867)
[20] Li C, Song J, Guo Z, et al. EZH2 Inhibitors Suppress Colorectal Cancer by Regulating Macrophage Polarization in the Tumor Microenvironment. Front Immunol. 2022;13:857808. Published 2022 Apr 1. doi:10.3389/fimmu.2022.857808(IF:7.561)
[21] Sun Z, Huang W, Zheng Y, et al. Fpr2/CXCL1/2 Controls Rapid Neutrophil Infiltration to Inhibit Streptococcus agalactiae Infection. Front Immunol. 2021;12:786602. Published 2021 Nov 24. doi:10.3389/fimmu.2021.786602(IF:7.561)
[22] Cai J, Cui X, Wang X, You L, Ji C, Cao Y. A Novel Anti-Infective Peptide BCCY-1 With Immunomodulatory Activities. Front Immunol. 2021;12:713960. Published 2021 Jul 22. doi:10.3389/fimmu.2021.713960(IF:7.561)
[23] Chen X, Zheng Y, Liu S, Yu W, Liu Z. CD169<sup>+</sup> subcapsular sinus macrophage-derived microvesicles are associated with light zone follicular dendritic cells. Eur J Immunol. 2022;52(10):1581-1594. doi:10.1002/eji.202249879(IF:6.688)
[24] Tian L, Li W, Yang L, et al. Cannabinoid Receptor 1 Participates in Liver Inflammation by Promoting M1 Macrophage Polarization via RhoA/NF-κB p65 and ERK1/2 Pathways, Respectively, in Mouse Liver Fibrogenesis. Front Immunol. 2017;8:1214. Published 2017 Sep 28. doi:10.3389/fimmu.2017.01214(IF:6.429)
[25] Zou D, Qin J, Hu W, et al. Macrophages Rapidly Seal off the Punctured Zebrafish Larval Brain through a Vital Honeycomb Network Structure. Int J Mol Sci. 2022;23(18):10551. Published 2022 Sep 11. doi:10.3390/ijms231810551(IF:6.208)
[26] Wang X, Li W, Jiang H, et al. Zebrafish Xenograft Model for Studying Pancreatic Cancer-Instructed Innate Immune Microenvironment. Int J Mol Sci. 2022;23(12):6442. Published 2022 Jun 9. doi:10.3390/ijms23126442(IF:5.924)
[27] Xiong C, Zhu Y, Xue M, et al. Tumor-associated macrophages promote pancreatic ductal adenocarcinoma progression by inducing epithelial-to-mesenchymal transition. Aging (Albany NY). 2021;13(3):3386-3404. doi:10.18632/aging.202264(IF:5.682)
[28] Pu S, Wu Y, Tong F, et al. Mechanosensitive Ion Channel TMEM63A Gangs Up with Local Macrophages to Modulate Chronic Post-amputation Pain [published online ahead of print, 2022 Jul 12]. Neurosci Bull. 2022;10.1007/s12264-022-00910-0. doi:10.1007/s12264-022-00910-0(IF:5.271)
[29] Wang J, Li X, Wang Y, Li Y, Shi F, Diao H. Osteopontin aggravates acute lung injury in influenza virus infection by promoting macrophages necroptosis. Cell Death Discov. 2022;8(1):97. Published 2022 Mar 4. doi:10.1038/s41420-022-00904-x(IF:5.241)
[30] Ma Y, Liang Y, Wang N, et al. Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses. J Virol. 2019;93(22):e00978-19. Published 2019 Oct 29. doi:10.1128/JVI.00978-19(IF:5.103)
[31] Jiang Q, Li W, Zhu X, et al. Estrogen receptor β alleviates inflammatory lesions in a rat model of inflammatory bowel disease via down-regulating P2X7R expression in macrophages. Int J Biochem Cell Biol. 2021;139:106068. doi:10.1016/j.biocel.2021.106068(IF:5.085)
[32] Tang Y, Wang C, Chen S, et al. Dimethyl fumarate attenuates LPS induced septic acute kidney injury by suppression of NFκB p65 phosphorylation and macrophage activation. Int Immunopharmacol. 2022;102:108395. doi:10.1016/j.intimp.2021.108395(IF:4.932)
[33] Lu Y, Lu G, Gao L, et al. The Proresolving Lipid Mediator Maresin1 Alleviates Experimental Pancreatitis via Switching Macrophage Polarization. Mediators Inflamm. 2021;2021:6680456. Published 2021 Mar 9. doi:10.1155/2021/6680456(IF:4.711)
[34] Li W, Chang N, Tian L, et al. miR-27b-3p, miR-181a-1-3p, and miR-326-5p are involved in the inhibition of macrophage activation in chronic liver injury. J Mol Med (Berl). 2017;95(10):1091-1105. doi:10.1007/s00109-017-1570-0(IF:4.686)
[35] Ji L, Chen Y, Xie L, Liu Z. The role of Dock2 on macrophage migration and functions during Citrobacter rodentium infection. Clin Exp Immunol. 2021;204(3):361-372. doi:10.1111/cei.13590(IF:4.330)
[36] Yang L, Dong C, Tian L, Ji X, Yang L, Li L. Gadolinium Chloride Restores the Function of the Gap Junctional Intercellular Communication between Hepatocytes in a Liver Injury. Int J Mol Sci. 2019;20(15):3748. Published 2019 Jul 31. doi:10.3390/ijms20153748(IF:4.183)
[37] Wu H, Xu X, Li J, Gong J, Li M. TIM?4 blockade of KCs combined with exogenous TGF?β injection helps to reverse acute rejection and prolong the survival rate of mice receiving liver allografts. Int J Mol Med. 2018;42(1):346-358. doi:10.3892/ijmm.2018.3606(IF:4.101)
[38] Zhao J, Chen XD, Yan ZZ, Huang WF, Liu KX, Li C. Gut-Derived Exosomes Induce Liver Injury After Intestinal Ischemia/Reperfusion by Promoting Hepatic Macrophage Polarization [published online ahead of print, 2022 Jun 14]. Inflammation. 2022;10.1007/s10753-022-01695-0. doi:10.1007/s10753-022-01695-0(IF:4.092)
[39] Guan Z, Ding Y, Liu Y, et al. Extracellular gp96 is a crucial mediator for driving immune hyperactivation and liver damage. Sci Rep. 2020;10(1):12596. Published 2020 Jul 28. doi:10.1038/s41598-020-69517-7(IF:3.998)
[40] Song C, Li H, Li Y, et al. NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization. Exp Cell Res. 2019;382(2):111486. doi:10.1016/j.yexcr.2019.06.031(IF:3.329)
[41] Li R, Yang L, Jiang N, et al. Activated macrophages are crucial during acute PM2.5 exposure-induced angiogenesis in lung cancer. Oncol Lett. 2020;19(1):725-734. doi:10.3892/ol.2019.11133(IF:1.871)
<上下滑動查看更多>